• Title/Summary/Keyword: Elevated air temperature

Search Result 124, Processing Time 0.025 seconds

Fabrication of Carbon Nanofiber/Cu Composite Powder by Electroless Plating and Microstructural Evolution during Thermal Exposure (무전해 도금에 의한 탄소나노섬유/Cu 복합 분말 제조 및 열적 안정성)

  • Kim In-soo;Lee Sang-Kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.39-42
    • /
    • 2004
  • Carbon nanofiber/Cu composite powder has been fabricated by electroless plating process. Microstructural evolution of the composite powder after heat treatment under vacuum, hydrogen and air environment was investigated. A dispersed carbon nanofiber coated by copper was produced at the as-plated condition. Carbon nanofiber is coated uniformly and densely with the plate shaped copper particles. The copper plates on the carbon nanofiber aggregate during the thermal exposure at elevated temperature in vacuum and hydrogen in order to reduce surface energy. The thermal exposure of the composite powder in air at $400^{\circ}C$ for 3 hours leads to the spherodization of the composite powder owing to oxidation of copper.

  • PDF

An Experimental Study of Water Vapor Pressure that occurs at the Interface of a Fluid-Applied Membrane and Concrete (콘크리트와 도막 방수층 계면에 발생되는 수증기압에 관한 실험적 연구)

  • Ko, Jin-Soo;Kim, Mun-Hee;Lee, Sung-Bok;Shin, Yun-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.147-150
    • /
    • 2006
  • Of the total defects that have occurred recently in the Korean construction market, over 30% are caused by the construction of defective waterproofing, and the phenomenon of air pockets in the waterproofing layer, which is caused by the concrete vapor pressure, is known to be the primary cause of defective waterproofing. Accordingly, in this study the theory about the relationship between water pressure and temperature as well as the damp-proofing volume of concrete and, then, the change of vapor pressure volume was measured and analyzed by making a test sample after spraying a dampness remover and a waterproofing material to a prepared test body. As a result of measuring the water vapor pressure for the surface temperature of the waterproofing layer with the fluid-applied membrane temperature based on about $10^{\circ}C$, which is the average temperature of Seoul, it was found that first, the fluid-applied membrane elevated up to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about $0.3kgf/cm^2$ when the surface temperature of the waterproofing layer was raised up to about $80^{\circ}C$. Second, when the fluid-applied membrane temperature of the waterproofing layer was raised from $30^{\circ}C\;to\;35^{\circ}C,\;about\;0.1kgf/cm^2$ of water vapor pressure was generated, and when supplying a thermal source to raise the fluid-applied membrane temperature of the waterproofing layer from $35^{\circ}C\;to\;40^{\circ}C$, approximately $0.05kgf/cm^2$ of water vapor pressure was generated.

  • PDF

Studies on Thermostable Ceramic Resistors (열에 안정한 Ceramic Resistor의 제조에 관한 연구)

  • Ahn, Young-Pil;Kim, Sang-Wook;Choi, Long
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.2
    • /
    • pp.15-20
    • /
    • 1975
  • Ceramic resistors to be stable at high temperature were manufactured from using MgO, SiO2, SnO2, Bi2O3, and CeO2 by sintering in air at 125$0^{\circ}C$. Electrical resistivity with elevated temperatures was studied for the various system of the above oxides. The resistor, 1.0 MgO-1.0 SiO2-0.575 SnO2-0.005 Sb2O3-0.025 Bi2O3-0.013 CeO2 has the resistivity, (14.55$\pm$0.3)$\times$103 ohm in a temperature range from $25^{\circ}C$. to 80$0^{\circ}C$. It is concluded that the ceramics prepared by a dielectric compound and metal oxide semi-conductor has a good thermostability for electrical appliciations.

  • PDF

Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete

  • Anwar Hossain, Khandaker M.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2009
  • The effect of six different curing conditions on compressive strength and ultrasonic pulse velocity (UPV) of volcanic pumice concrete (VPC) and normal concrete (NC) has been studied. The curing conditions include water, air, low temperature ($4^{\circ}C$) and different elevated temperatures of up to $110^{\circ}C$. The curing age varies from 3 days to 91 days. The development in the pulse velocity and the compressive strength is found to be higher in full water curing than the other curing conditions. The reduction of pulse velocity and compressive strength is more in high temperature curing conditions and also more in VPC compared to NC. Curing conditions affect the relationship between pulse velocity and compressive strength of both VPC and NC.

High Temperature Oxidation Characteristics of Ti-Al Intermetallic Compounds (Ti-Al계 금속간화합물의 고온산화특성)

  • 오인석;최창우;김길무;홍준표;김종집
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.253-261
    • /
    • 1992
  • Ti-Al intermetallic compounds which can be used in gas turbine at elevated temperature were inves-tigated in order to improve oxidation resistance by the formation of protective oxide scale. Four Ti-Al alloys were prepared by plasma arc melting. As the amount of Al was increased among the alloys, oxida-tion resistance was improved by the formation of relatively purer Al2O3 layer. However, the alloys which have less amount of Al formed a duplex layer of Al2O3 and TiO2. When samples were oxidized in pure oxygen instead of air, oxidation resistance was improved because of formation of the purer Al2O3 layer.

  • PDF

Investigation of Li Dopant as a Sintering Aid for ScSZ Electrolyte for IT-SOFC

  • Mori, Masashi;Liu, Yu;Ma, Shuhua;Hashimoto, Shin-ichi;Takei, Katsuhito
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.760-765
    • /
    • 2008
  • In this study, the effects of small amounts (${\leq}3\;mol%$) of Li doping on the sintering characteristics and electrochemical performance of $(ZrO_2)_{0.89}(ScO_{1.5})_{0.1}(CeO_2)_{0.01}$ (ScSZ) were investigated. By adding 3 mol% lithium, the densification temperature of ScSZ was reduced from the conventional temperature of $1400^{\circ}C$ to $1200^{\circ}C$. It was found that Li doping also led to changes in the Zr:Sc ratio at the grain boundaries. Correspondingly, the dispersion of lithium zirconia at the grain boundaries accelerated the growth of ScSZ grains and increased the grain boundary resistance at temperatures below $450^{\circ}C$. At elevated temperatures of $450{\sim}750^{\circ}C$, the electrical conductivity of the ScSZ after doping remained almost unchanged under air and reducing atmospheres. These results suggest that the addition of lithium is promising for use in low temperature co-firing of ScSZ-based components for intermediate temperature solid oxide fuel cells.

Mechanical Properties of High Strength Concrete Subjected to Elevated Temperature Depending on Fiber Types and Contents (혼입 섬유종류 변화에 따른 고온가열 고강도 콘크리트의 역학적 특성)

  • Kim, Sang-Shik;Song, Yong-Won;Lee, Bo-Hyeong;Yang, Seong-Hwan;Kim, Seoung-Soo;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.95-98
    • /
    • 2007
  • This study investigates the mechanical properties of the high strength concrete in the region of 80MPa corresponding to the temperature and fiber content change. For the properties of the fresh, slump flow is $600{\pm}100mm$, and air content is $3.0{\pm}1.0%$. They satisfy each targets, and there was no difference for the each fiber types. As the propertied of the hardened concrete, the compressive strength at 28 days is indicated over 80MPa, and they are similar to the change of the fiber types. The residual compressive strength in response to the temperature change of the NY, PP, and NY+PP fiber at $200^{\circ}C$ are increased by 115, 114, and 110% on the standard condition, and it is suddenly decreased at $400^{\circ}C$. They are decreased by 33, 19, and 16% on the standard condition at $800^{\circ}C$.

  • PDF

A strudyon the improvement of the oxidation resistance for high temperature materials by coating process (코팅에 의한 고온재료의 내산화성 향상을 위한 연구)

  • 강석철;민경안;안연상;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.2
    • /
    • pp.93-103
    • /
    • 1997
  • High temperature materials used in the elevated temperature and corrosive atmosphere must have the good oxidation resistance and preserve their own mechanical properties simultaneously. For the oxidation resistance, it is very important to form a protective oxide scale such as $Al_2O_3$ or $Cr_2O_3$ on the substrate. However, the additions of protective oxide forming elements such as Cr and Al in the alloy to enhance its oxidation resistance are limited due to the deleterious effects on their mechanical properties. PECVD(P1asma Enhanced Chemical Vapor Deposition) coating processes were employed to improve the oxidation resistance at high temperature. Cr and/or A1 were coated on the substrates of Ni and Inconel 600 at various temperatures of 400, 500, $600^{\circ}C$ and at different conditions of specimen surfaces. Then, coated specimens were exposed to isothermal and cyclic oxidation conditions in air at 1000 and $1100^{\circ}C$. In order to enhance the adhesion between the substrate and coated layer, heat treatments of the coated specimens were conducted in a vacuum. At isothermal oxidation experiments, Al-coated Ni specimen showed better oxidation resistance than pure Ni. At cyclic oxidation experiments at $1000^{\circ}C$. Cr and Al-coated specimen showed better oxidation resistance. Cr-coated Inconel 600 had also showed better oxidation resistance due to Cr in the substrate. By PECVD coating process, oxidation resistance could be improved, but it was not improved as expected due to the weakness of the adhesion between the substrate and the coated layer.

  • PDF

A Study on Oxidation-Resistance of Iron Nanoparticles Synthesized by Chemical Vapor Condensation Process (화학기상응축법으로 제조된 철 나노분말의 산화저항에 관한 연구)

  • Lee Dong-Won;Yu Ji-Hun;Bae Jeoung-Hyun;Jang Tae-Suk;Kim Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.225-230
    • /
    • 2005
  • In order to prevent the oxide formation on the surface of nano-size iron particles and thereby to improve the oxidation resistance, iron nanoparticles synthesized by a chemical vapor condensation method were directly soaked in hexadecanethiol solution to coat them with a polymer layer. Oxygen content in the polymer-coated iron nanoparticles was significantly lower than that in air-passivated particles possessing iron-core/oxide-shell structure. Accordingly, oxidation resistance of the polymer-coated particles at an elevated temperature below $130^{\circ}C$ in air was $10\~40$ times higher than that of the air- passivated particles.

Color Enhancement for Cubic Zirconia with Low Temperature Annealing (큐빅지르코니아의 색향상을 위한 저온열처리 공정 연구)

  • Li, Feng;Shen, Yun;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1186-1191
    • /
    • 2010
  • Colored cubic zirconia specimen made by skull melt process were annealed in vacuum at the temperature of $1200^{\circ}C{\sim}1400^{\circ}C$ for 10~60 minutes to enhance the color. All the seven specimen become darker and eventually be black as annealing temperature and time increase. The black samples turned into original colors when we elevated the temperature with oxy-acetylene torch for around 10 minutes in the air. Finally, we could tune the colors of cubic zirconia either anneal in vacuum or the black samples in the air to obtain the proposed colors. Our proposed new process may be appropriate to fabricate the precious synthetic colored cubic zirconia to simulate the natural colored gem quality diamonds.