• Title/Summary/Keyword: Elemental mercury removal

Search Result 17, Processing Time 0.031 seconds

Hg(0) Removal Using Se(0)-doped Montmorillonite from Selenite(IV)

  • Lee, Joo-Youp;Kim, Yong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3767-3770
    • /
    • 2013
  • Potassium methylselenite ($KSeO_2(OCH_3)$) was reduced to elemental selenium, Se(0), and then doped onto montmorillonite K 10 (MK10) clay to examine the interaction between elemental mercury (Hg(0)) vapor and Se(0) in an effort to understand the possible heterogeneous reaction of Hg(0) vapor and Se(0) solid. The clay was used as a cost-effective support material for uniform dispersion of Se(0). The Se(0)-doped MK10 showed an excellent reaction performance with Hg(0) under an inert nitrogen gas at 70 and $140^{\circ}C$ in our lab-scale fixed-bed system. However, the precursor, $KSeO_2(OCH_3)$-doped MK10 showed a negligible reaction performance with Hg(0), suggesting that the oxidation state of selenium plays a key role in the reaction of Hg(0) vapor and selenium compounds.

Association between amalgam removal and urinary mercury concentration: a pilot study (아말감 충전물 제거와 뇨중 수은농도의 관련성 평가: 예비연구)

  • Baek, Hye-Jin;Sa, Kong-Joon;An, Seo-Young;Lee, Hee-Kyung;Song, Keun-Bae;Choi, Youn-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.2
    • /
    • pp.431-438
    • /
    • 2012
  • Objectives : The aim of this study was assessment of the variation of urinary mercury concentrations after removal of amalgam fillings in children. Methods : 10 elemental school children with amalgam filling tooth surfaces were took part in this study. One dentist recorded the number of amalgam filling surface, and general characteristics of subjects were surveyed by questionnaire. Each urine samples were collected before, immediately after and after 24 hours amalgam removal. The statistical analysis was performed using the SPSS 18.0. Results : The mean concentration urinary mercury immediately after amalgam removal was higher ($5.70{\pm}1.20{\mu}g/g$ creatinine) than before amalgam removal ($5.28{\pm}1.53{\mu}g/g$ creatinine). The mean concentration urinary mercury level whose have 1-10 amalgam removal surfaces was increased after amalgam removal compared with before. Conclusions : Mercury concentration in urine was influenced by amalgam removal.

Gas-Phase Mercury Control Technology from Flue Gas (연소배가스로부터 가스상 수은 처리기술)

  • 이시훈
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2003
  • In Korea, not much interest has been paid yet to mercury among flue gas HAPs (Hazardous Air Pollutants), but mercury is expected to become a major problem in the near future. The present paper investigates the current state of mercury emission and control technologies. Interest of the U.S. and European countries in the area of air pollution has been recently directed to mercury emitted from power plants. There are largely two mercury removal technologies applied to power plants. One is removing mercury by oxidizing elemental mercury in WFGD (Wet Flue Gas Desulfurization), and the other is spraying an adsorbent such as activated carbon or other novel sorbents (low-cost sorbents). Developed country is requiring that all power plants be equipped with mercury control facilities by 2007. This paper aims at contributing to the establishment of future strategies in response to the problem.

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.

A Study on Applicability of Mercury-contaminated Tailing and Soil Remediation around abandoned Mines using Washing Process (세척공법을 이용한 광산주변 수은 함유 오염물질 처리 적용성 평가)

  • Kwon, Yo Seb;Park, So Young;Koh, Il Ha;Ji, Won Hyun;Lee, Jin Soo;Ko, Ju In
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • This study was carried out to evaluate the applicability of the soil washing process to remediation mercury-contaminated mine tailing or solid material (soil and sediments etc.) around abandoned mines. First, the physicochemical characteristics of mine tailing were analyzed through particle size analysis and sequential extraction. Secondly, laboratory scale washing experiments were performed using hydrochloric acid, nitric acid, potassium iodide and sodium thiosulfate. As a results of particle size analysis, mine tailing particle were concentrated below 40 mesh and the particle size below 200 mesh was the most analyzed. As a result of sequential extraction, elemental mercury fraction was analyzed as the highest with 69.12%, with strongly bound fraction 15.25% and residual and HgS fractions 11.97%, respectively. Laboratory scale washing experiments showed low applicability for nitric acid and sodium thiosulfate solutions. In case of hydrochloric acid solution, it was analyzed that mercury removal was possible at particle size of 200 mesh or more. Therefore, it is considered to be performed together with the physical sorting process. Potassium iodide solution was analyzed to have high washing efficiency at all concentrations and particle sizes. In particular, the mercury removal efficiency is high in the micro particles, and thus the applicability of the washing technology is the highest.

Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics (증기상 원소수은의 흡착제 개발 및 흡착특성 연구)

  • Cho, Namjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2021
  • Mercury, once released, is not destroyed but accumulates and circulates in the natural environment, causing serious harm to ecosystems and human health. In the United States, sulfur-impregnated activated carbon is being considered for the removal of vapor mercury from the flue gas of coal-fired power plants, which accounts for about 32 % of the anthropogenic emissions of mercury. In this study, a high-efficiency porous mercury adsorption material was developed to reduce the mercury vapor in the exhaust gas of coal combustion facilities, and the mercury adsorption characteristics of the material were investigated. As a result of the investigation of the vapor mercury adsorption capacity at 30℃, the silica nanotube MCM-41 was only about 35 % compared to the activated carbon Darco FGD commercially used for mercury adsorption, but it increased to 133 % when impregnated with 1.5 % sulfur. In addition, the furnace fly ash recovered from the waste copper regeneration process showed an efficiency of 523 %. Furthermore, the adsorption capacity was investigated at temperatures of 30 ℃, 80 ℃, and 120 ℃, and the best adsorption performance was found to be 80 ℃. MCM-41 is a silica nanotube that can be reused many times due to its rigid structure and has additional advantages, including no possibility of fire due to the formation of hot spots, which is a concern when using activated carbon.