• Title/Summary/Keyword: Elemental image array

Search Result 52, Processing Time 0.018 seconds

Plane-based Computational Integral Imaging Reconstruction Method of Three-Dimensional Images based on Round-type Mapping Model (원형 매핑 모델에 기초한 3차원 영상의 평면기반 컴퓨터 집적 영상 재생 방식)

  • Shin, Dong-Hak;Kim, Nam-Woo;Lee, Joon-Jae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.991-996
    • /
    • 2007
  • Recently, a computational reconstruction method using an integral imaging technique, which is a promise three-dimensional display technique, has been actively researched. This method is that 3-D images can be digitally reconstructed at the required output planes by superposition of all of the inversely enlarged elemental images by using a hypothetical pinhole array model. However, the conventional method mostly yields reconstructed images having a low-resolution, because there are some intensity irregularities with a grid structure at the reconstructed mage plane by using square-type elemental images. In this paper, to overcome this problem, we propose a novel computational integral imaging reconstruction (CIIR) method using round-type mapping model. Proposed CIIR method can overcome problems of non-uniformly reconstructed images caused from the conventional method and improve the resolution of 3-D images. To show the usefulness of the proposed method, both computational experiment and optical experiment are carried out and their results are presented.

Image-Quality Enhancement for a Holographic Wavefront Color Printer by Adaptive SLM Partitioning

  • Hong, Sunghee;Stoykova, Elena;Kang, Hoonjong;Kim, Youngmin;Hong, Jisoo;Park, Joosup;Park, Kiheon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • The wavefront printer records a volume-reflection hologram as a two-dimensional array of elemental holograms from computer-generated holograms (CGHs) displayed on a spatial light modulator (SLM). The wavefront coming from the object is extracted by filtering in the spatial-frequency domain. This paper presents a method to improve color reproduction in a wavefront printer with spatial division of exposures at primary colors, by adaptive partitioning of the SLM in accordance with the color content encoded in the input CGHs, and by the controllable change of exposure times for the recording of primary colors. The method is verified with a color wavefront printer with demagnification of the object beam. The quality of reconstruction achieved by the proposed method proves its efficiency in eliminating the stripe artifacts that are superimposed on reconstructed images in conventional mosaic recording.