• Title/Summary/Keyword: Elemental System

Search Result 306, Processing Time 0.03 seconds

Effects of Ball Milling for Elemental Powders on Ni-Al based Intermetallics Coating on Mild Steel through Induction Heating Process (Ni-Al계 금속간화합물의 고주파 연소합성코팅에 미치는 볼 밀링의 영향)

  • Lee, Han-Young;Park, Won-Kyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.296-302
    • /
    • 2017
  • Ball milling of elemental powders in advance and using an induction heating system for intermetallic coatings are known to enhance the reactivity of combustion synthesis. In this work, the effects of simultaneously applying these two incentive methods on the properties of intermetallic coatings are studied. Ni-Al powder compacts ball-milled with three different ball-to-powder weight ratio mixtures are synthesized and coated on mild steel by combustion synthesis in an induction heating system. Consequently, similar to an electrical heating system, the positive effects of ball milling on the combustion synthesis are confirmed in the induction heating system. The enhancement in synthetic reactivity achieved by applying the two incentive methods at the same time is greater than that by applying each incentive method separately. In particular, the enhancement is remarkable at low reaction temperature. However, there are limitations to improving the reactivity by simultaneously applying the two incentive methods to the combustion synthesis, unlike the reaction temperature. The microstructure and hardness of the coating layer are both influenced by the ball-charging ratio employed in the ball-milling process.

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System (준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사)

  • Park, Seung-Shik;Ondov, John M.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

A Case Study of Exposure to Elemental Carbon (EC) in an Underground Copper Ore Mine (구리원석광산에서의 Elemental Carbon (EC) 노출에 관한 사례연구)

  • Lee, Su-Gil;Kim, Jung-Hee;Kim, Seong-Soo
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1013-1021
    • /
    • 2017
  • Exposure to Diesel Particulate Matter (DPM) potentially causes adverse health effects (e.g. respiratory symptoms, lung cancer). Due to a lack of data on Elemental Carbon (EC) exposure levels in underground copper ore mining (unlike other underground mining industries such as non-metallic and coal mining), this case study aims to provide individual miners' EC exposure levels, and information on their work practices including use of personal protective equipment. EC measurement was carried out during different work activities (i.e. drilling, driving a loader, plant fitting, plant operation, driving a Specialized Mining Vehicle (SMV)) as per NIOSH Method 5040. The copper miners were working 10 h/day and 5 days/week. This study found that the most significant exposures to EC were reported from driving a loader (range $0.02-0.42mg/m^3$). Even though there were control systems (i.e. water tanks and DPM filters) on the diesel vehicles, around 49.5% of the results were over the adjusted recommendable exposure limit ($0.078mg/m^3$). This was probably due to: (1) driver's frequently getting in and out of the diesel vehicles and opening the windows of the diesel vehicles, and (2) inappropriate maintenance of the diesel vehicles and the DPM control systems. The use of the P2 type respirator provided was less than 19.2%. However, there was no significant difference between the day shift results and the night shift results. In order to prevent or minimize exposure to EC in the copper ore mine, it is recommended that the miners are educated in the need to wear the appropriate respirator provided during their work shifts, and to maintain the diesel engine and emission control systems on a regular basis. Consideration should be given to a specific examination of the diesel vehicles' air-conditioning filters and the air ventilation system to control excessive airborne contaminants in the underground copper mine.

Elemental components analysis according to the size of fine particles emitted from a coal-fired power plant using an ejector-porous tube dilution sampling and ELPI (이젝터-다공튜브 희석 샘플링과 ELPI를 이용한 석탄화력발전소 배출 미세먼지의 입자 크기에 따른 성분 분석)

  • Shin, Dongho;Park, Daehoon;Joe, Yunhui;Kim, Younghun;Hong, Kee-Jung;Lee, Gunhee;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2022
  • In order to understand the characteristics of fine particles emitted from coal-fired power plant stacks, it is important to analyze the size distribution and components of particles. In this study, particle size distributions were measured using the ejector-porous tube dilution device and an ELPI system at a stack in a coal-fired power plant. Main elemental components of particles in each size interval were also identified through TEM-EDS analysis for the particles collected in each ELPI stage. Particle size distributions based on number and mass were analyzed with component distributions from 0.006 to 10 ㎛. The highest number concentration was about 0.01 ㎛. The main component of the particles consisted of sulfur, which indicated that sulfate aerosols were generated by gas-to-particle conversion of SO2. In a mass size distribution, a mono-modal distribution with a mode diameter of about 2 ㎛ was shown. For the components of PM1.0 (particles less than 1 ㎛), the abundance order was F > Mg > S > Ca, and however, for the components of PM10 (particles less than 10 ㎛), it was in the order of Fe > S > Ca > Mg. The elemental components by particle size were confirmed.

Study about aperture ratio of projection-type integral imaging system (투사형 집적 영상 시스템의 개구율에 관한 연구)

  • Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.81-82
    • /
    • 2008
  • The projection-type integral imaging system using mirror array is studied at the viewpoint of the aperture ratio of system. The aperture ratio which is determined by the relation of the specifications of the projection lens and the elemental mirrors affects the viewing quality of integral imaging system. This factors play an important role in the system design.

  • PDF

Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction

  • Lee, Min-Chul;Inoue, Kotaro;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.

New Photometric System for CN and CH

  • Lee, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.43.2-43.2
    • /
    • 2016
  • During the last decade, there has been a dramtic paradigm shift on the definition of the globular cluster (GC) systems. The decades-long lighter elemental variation issue in GC stars is now considered to be a generic feature of normal GCs in our Galaxy, most likely engraved during the multiple-phase normal GC formation. In this talk, we will introduce the new photometric system, so-call the JWL System, to measure CN and CH abundances in multiple stellar populations in GCs. The utility and the future application of the JWL System will be discussed.

  • PDF

기획단계에서의 최적 개산견적산정의 방법론 고찰

  • Kim Chan-Joong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.120-125
    • /
    • 2003
  • The estimated construction costs derived at the Planning stage of a project are utilized as important data determining the feasibility of overall project. Therefore the clients usually expect to have estimations of the construction cost as precise as possible and there has been extensive studies carried out by the cost specialists worldwide to satisfy this client's specific need whereas the local estimators still heavily rely on producing quantities and detail quotations only. This paper is to introduce a case study where elemental/functional area cost analysis is incorporated into a database system for the improved accuracy in cost estimations.

  • PDF

Hg(0) Removal Using Se(0)-doped Montmorillonite from Selenite(IV)

  • Lee, Joo-Youp;Kim, Yong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3767-3770
    • /
    • 2013
  • Potassium methylselenite ($KSeO_2(OCH_3)$) was reduced to elemental selenium, Se(0), and then doped onto montmorillonite K 10 (MK10) clay to examine the interaction between elemental mercury (Hg(0)) vapor and Se(0) in an effort to understand the possible heterogeneous reaction of Hg(0) vapor and Se(0) solid. The clay was used as a cost-effective support material for uniform dispersion of Se(0). The Se(0)-doped MK10 showed an excellent reaction performance with Hg(0) under an inert nitrogen gas at 70 and $140^{\circ}C$ in our lab-scale fixed-bed system. However, the precursor, $KSeO_2(OCH_3)$-doped MK10 showed a negligible reaction performance with Hg(0), suggesting that the oxidation state of selenium plays a key role in the reaction of Hg(0) vapor and selenium compounds.