• Title/Summary/Keyword: Elemental System

Search Result 306, Processing Time 0.025 seconds

Advanced 360-Degree Integral-Floating Display Using a Hidden Point Removal Operator and a Hexagonal Lens Array

  • Erdenebat, Munkh-Uchral;Kwon, Ki-Chul;Dashdavaa, Erkhembaatar;Piao, Yan-Ling;Yoo, Kwan-Hee;Baasantseren, Ganbat;Kim, Youngmin;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.706-713
    • /
    • 2014
  • An enhanced 360-degree integral-floating three-dimensional display system using a hexagonal lens array and a hidden point removal operator is proposed. Only the visible points of the chosen three-dimensional point cloud model are detected by the hidden point removal operator for each rotating step of the anamorphic optics system, and elemental image arrays are generated for the detected visible points from the corresponding viewpoint. Each elemental image of the elemental image array is generated by a hexagonal grid, due to being captured through a hexagonal lens array. The hidden point removal operator eliminates the overlap problem of points in front and behind, and the hexagonal lens array captures the elemental image arrays with more accurate approximation, so in the end the quality of the displayed image is improved. In an experiment, an anamorphic-optics-system-based 360-degree integral-floating display with improved image quality is demonstrated.

3D Image Display Method using Synthetic Aperture integral imaging (Synthetic aperture 집적 영상을 이용한 3D 영상 디스플레이 방법)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2037-2042
    • /
    • 2012
  • Synthetic aperture integral imaging is one of promising 3D imaging techniques to capture the high-resolution elemental images using multiple cameras. In this paper, we propose a method of displaying 3D images in space using the synthetic aperture integral imaging technique. Since the elemental images captured from SAII cannot be directly used to display 3D images in an integral imaging display system, we first extract the depth map from elemental images and then transform them to novel elemental images for 3D image display. The newly generated elemental images are displayed on a display panel to generate 3D images in space. To show the usefulness of the proposed method, we carry out the preliminary experiments using a 3D toy object and present the experimental results.

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.

The test bed for teleoperated space robot (우주로봇 원격제어 테스트 베드)

  • 김동구;박종오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.760-763
    • /
    • 1997
  • Using telesensor programming method, we control the space robot which has two 2-DOF manipulators. To make this control system, we devide total works by elemental operation. And we make a simulation system that can simulate sensors and robot. In the simulation system, we make a sensor data and robot paths by "Teaching by showing" method. And using these data, we control the real space robot. This off-line method can solve long time delay problem in teleoperation.operation.

  • PDF

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Application of Semi-continuous Ambient Aerosol Collection System for Elemental Analysis (대기입자의 원소성분 배출특성연구를 위한 반-연속식 입자채취시스템 적용)

  • Park, Seung-Shik;Ko, Jae-Min;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Aerosol slurry samples were collected in 60-min interval using Korean Semi-continuous Elements in Aerosol Sampler (KSEAS) between May 19 and June 6, 2010 at an urban site of Gwangju. The $PM_{2.5}$ samples were collected with a flow rate of 16.7 L/min and particles are grown by condensation of water vapor in a condenser maintained at ${\sim}5^{\circ}C$ after saturation by direct injection of steam. The resulting droplets are collected in a liquid slurry with a airdroplet separator. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, Se) in the collected slurry samples were determined off-line by ICP-MS. KSEAS sample analysis encompassed the sampling periods for which 24-hr average elemental species concentrations were calculated for comparison with those derived from 24-hr integrated filter samples. Relationship between elemental species measured by two methods indicated high correlation coefficients (r), mostly greater than r of 0.80. However, we note that concentrations of Al, K, Ca, Mn, and Fe, which are often associated with crustal elemental particles, in the KSEAS samples, were substantially lower (1.4~11 times) than those found in the typical filter-based samples. This discrepancy is probably due to difficulties in transferring insoluble dust particles to the collection vials in the KSEAS. Temporal profiles of elemental concentrations indicate that some transient events in their concentrations are observed over the sampling periods. For the elemental species studied, atmospheric concentrations during the transient events increased by factors of 4 in Mn~80 in Zn, compared to their background levels. Principle component analyses were applied to the hourly KSEAS data sets to identify sources affecting the concentrations of the metal constituents observed. In this study, we conclude that hourly measurements for particle-bound elemental constituents were extremely useful for revealing the short-term variability in their concentrations and developing insights into their sources.

Three-dimensional Display of Microscopic Specimen using Integral Imaging Microscope and Display (집적 영상 현미경과 집적 영상 디스플레이를 이용한 미세시료의 3차원 영상 재생)

  • Lim, Young-Tae;Park, Jae-Hyeung;Kwon, Ki-Chul;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1311-1319
    • /
    • 2009
  • Microscopic specimen was captured by an integral imaging microscope and displayed as a three-dimensional image by an integral imaging display system. We applied the generalized relationship between pickup and display using two different lens arrays to our integral imaging microscope and display system. In order to display three-dimensional microscopic image, scaling of the captured elemental images is required. We analyzed the effect of the scaling coefficient in terms of the distortion of the displayed three-dimensional image and the loss of the captured elemental images. In our experiment, microscopic specimen is picked up by an integral imaging microscope having $125{\mu}m$ elemental lens pitch and displayed as three-dimensional image by an integral imaging display system having 1mm elemental lens pitch. The scaling coefficient was chosen to minimize the elemental image loss.

Adsorption Characteristics of Elemental Iodine and Methyl Iodide on Base and TEDA Impregnated Carbon (활성탄을 이용한 원소요오드 및 유기요오드 흡착특성)

  • Lee, Hoo-Kun;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.44-55
    • /
    • 1996
  • For the purpose of controlling the release of radioiodine to the environment in nuclear power plants, adsorption characteristics of elemental iodine and methyl iodide on the base carbon and 2%, 5% TEDA impregnated carbons were studied. The amounts of adsorption of elemental iodine and methyl iodide on the carbons were compared with Langmuir, Freundlich, Sips and Dubinin-Astakhov(DA) isotherm equations. Adsorption data were well correlated by the DA equation based on the potential theory. Adsorption energy distributions were obtained from the parameters of the DA equation derived from the condensation approach method. For the adsorption of methyl iodide and elemental iodine-carbon system, the DA equation can be well expressed by the degree of heterogeneity of the micropore system because the surface is nonuniform when its potential energy is unequal. The adsorption energy distribution wes investigated to find a surface heterogeneity on the carbon. The surface heterogeneity for iodine-carbon system is highly affected by the adsorbate-adsorbent interaction as well as the pore structure. The surface heterogeneity increases as a content of TEDA impregnated increases. The adsorption nature of methyl iodide on carbon turned out to be more heterogeneous than that of elemental iodine.

  • PDF

Depth-Conversion in Integral Imaging Three-Dimensional Display by Means of Elemental Image Recombination (3차원 영상 재생을 위한 집적결상법에서 기본영상 재조합을 통한 재생영상의 깊이 변환)

  • Ser, Jang-Il;Shin, Seung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2007
  • We have studied depth conversion of a reconstructed image by means of recombination of the elemental images in the integral imaging system for 3D display. With the recombination, depth conversion to the pseudoscopic, the orthoscopic, the real or the virtual as well as to arbitrary depth without any distortion is possible under proper conditions. The conditions on the recombinations for the depth conversion are theoretically derived. The reconstructed images using the converted elemental images are presented.

Synthesis method of elemental images from Kinect images for space 3D image (공간 3D 영상디스플레이를 위한 Kinect 영상의 요소 영상 변환방법)

  • Ryu, Tae-Kyung;Hong, Seok-Min;Kim, Kyoung-Won;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.162-163
    • /
    • 2012
  • In this paper, we propose a synthesis method of elemental images from Kinect images for 3D integral imaging display. Since RGB images and depth image obtained from Kinect are not able to display 3D images in integral imaging system, we need transform the elemental images in integral imaging display. To do so, we synthesize the elemental images based on the geometric optics mapping from the depth plane images obtained from RGB image and depth image. To show the usefulness of the proposed system, we carry out the preliminary experiments using the two person object and present the experimental results.

  • PDF