• 제목/요약/키워드: Elemental Distribution

검색결과 173건 처리시간 0.027초

A STUDY ON KOREAN ANTHRACITE BY INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS

  • Kim, N.B.;Woo, H.J.;Lee, K.Y.;Hong, W.;Chun, S.K.;Park, K.S.
    • 분석과학
    • /
    • 제7권4호
    • /
    • pp.477-482
    • /
    • 1994
  • 2개 광산의 무연탄을 Co와 Au 비교체를 사용한 비파괴 중성자 방사화분석법으로 분석하여 31개 원소들의 함량을 구했다. 각 원소의 평균 함량과 함량 범위를, 그리고 광산의 원소별 함량 차이를 제시하였다. 또한 희토류 원소들의 원자량에 따른 함량 분포의 경향과 광상의 깊이에 따른 원소들의 함량 변화를 제시하였다.

  • PDF

Parallel Processing for Integral Imaging Pickup Using Multiple Threads

  • Jang, Young-Hee;Park, Chan;Park, Jae-Hyeung;Kim, Nam;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • 제5권4호
    • /
    • pp.30-34
    • /
    • 2009
  • Many studies have been done on the integral imaging pickup whose objective is to get efficiently elemental images from a lens array with respect to three-dimensional (3D) objects. In the integral imaging pickup process, it is necessary to render an elemental image from each elemental lens in a lens array for 3D objects, and then to combine them into one total image. The multiple viewpoint rendering (MVR) is one of various methods for integral imaging pickup. This method, however, has the computing and rendering time problem for obtaining element images from a lot of elemental lens. In order to solve the problems, in this paper, we propose a parallel MVR (PMVR) method to generate elemental images in a parallel through distribution of elemental lenses into multiple threads simultaneously. As a result, the computation time of integral imaging using PMVR is reduced significantly rather than a sequential approach and then we showed that the PMVR is very useful.

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • 제45권6호
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

A New Approach to Surface Imaging by Nano Secondary Ion Mass Spectrometry

  • 홍태은;변미랑;장유진;김종필;정의덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.105.1-105.1
    • /
    • 2016
  • Many of the complex materials developed today derive their unique properties from the presence of multiple phases or from local variations in elemental concentration. Simply performing analysis of the bulk materials is not sufficient to achieve a true understanding of their physical and chemical natures. Secondary ion mass spectrometer (SIMS) has met with a great deal of success in material characterization. The basis of SIMS is the use of a focused ion beam to erode sample atoms from the selected region. The atoms undergo a charge exchange with their local environment, resulting in their conversion to positive and negative secondary ions. The mass spectrometric analysis of these secondary ions is a robust method capable of identifying elemental distribution from hydrogen to uranium with detectability of the parts per million (ppm) or parts per billion (ppb) in atomic range. Nano secondary ion mass spectrometer (Nano SIMS, Cameca Nano-SIMS 50) equipped with the reactive ion such as a cesium gun and duoplasmatron gun has a spatial resolution of 50 nm which is much smaller than other SIMS. Therefore, Nano SIMS is a very valuable tool to map the spatial distribution of elements on the surface of various materials In this talk, the surface imaging applications of Nano SIMS in KBSI will be presented.

  • PDF

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권1호
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.

이젝터-다공튜브 희석 샘플링과 ELPI를 이용한 석탄화력발전소 배출 미세먼지의 입자 크기에 따른 성분 분석 (Elemental components analysis according to the size of fine particles emitted from a coal-fired power plant using an ejector-porous tube dilution sampling and ELPI)

  • 신동호;박대훈;조윤희;김영훈;홍기정;이건희;한방우;황정호
    • 한국입자에어로졸학회지
    • /
    • 제18권3호
    • /
    • pp.69-77
    • /
    • 2022
  • In order to understand the characteristics of fine particles emitted from coal-fired power plant stacks, it is important to analyze the size distribution and components of particles. In this study, particle size distributions were measured using the ejector-porous tube dilution device and an ELPI system at a stack in a coal-fired power plant. Main elemental components of particles in each size interval were also identified through TEM-EDS analysis for the particles collected in each ELPI stage. Particle size distributions based on number and mass were analyzed with component distributions from 0.006 to 10 ㎛. The highest number concentration was about 0.01 ㎛. The main component of the particles consisted of sulfur, which indicated that sulfate aerosols were generated by gas-to-particle conversion of SO2. In a mass size distribution, a mono-modal distribution with a mode diameter of about 2 ㎛ was shown. For the components of PM1.0 (particles less than 1 ㎛), the abundance order was F > Mg > S > Ca, and however, for the components of PM10 (particles less than 10 ㎛), it was in the order of Fe > S > Ca > Mg. The elemental components by particle size were confirmed.

인체 환경 연구를 위한 한약재, 작업장 공기 및 모발의 원소분석 (Elemental Analysis of herbal medicine, Foundry Air and Hair for the Study of Human Surroundings)

  • 강상훈;이상순;조승연;정용삼
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.64-71
    • /
    • 2002
  • Hair provides important information about the body's mineral status. Therefore, we have studied the trace elemental distribution in human hair under different inhalation and ingestion environment using neutron activation analysis (NAA). NAA is a powerful analytical method which can be used successfully to determine trace elements in environmental and biological materials. Total diet and six different herbal medicine were analysed to study ingestion environment. Airborne dust in foundry was analysed and compared with outdoor dust to study inhalation environment. Human hairs of common person, herbal medicine taker and foundry worker were analysed to estimate the trace elemental distribution of people under different inhalation and ingestion environment. Analytical results show that herbal medicines contain higher micronutrients such as Ca, Mg, Mn and Cu that total diet and airborne dust in foundry has high Cr. The concentration of Ca, Mg and Mn in hair of herbal medicine taker is two times higher than in hair of common person and Cr con-centration in hair of foundry worker is about three times higher than in hair of common person. These results show that NAA can be used importantly to monitor human health through biological and environmental samples.

실적자료에 의한 적정 건축공사비 산정 방법에 관한 사례연구 (A Study of the Application for Proper Construction Cost Estimating Method based on the Actual Cost Data)

  • 조재호;박상준;전재열
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2001년도 학술대회지
    • /
    • pp.383-386
    • /
    • 2001
  • 본 연구는 실적공사비적산 제도의 정착을 위한 적정 예정공사비 산정방법 제안 및 사례분석을 통해 타당성 검증을 목적으로 한다. 건설공사비는 미래의 예측으로 불확실성을 가지고 있으며 이는 과거의 실적에 의하여 추정할 수 있다. 실적자료는 건설환경의 다양성, 개별성, 특수성 등을 나타내줌으로서 이에 대한 자료조건 분류 및 보정으로 불확실한 공사비론 예측 가능하게 한다. 따라서 본 연구에서는 조건분류, 물가보정 및 확률적 개념을 도입하여 프로젝트 초기단계에서 및 실행예정가 산정시 적정 비용의 산정방법을 제안하고자 한다.

  • PDF

粒子狀 物質中 金屬成分의 密度分布 (Density Distributions of Metallic Compounds in Particulate Matters)

  • 허문영;김형춘;손동헌
    • 한국대기환경학회지
    • /
    • 제2권2호
    • /
    • pp.9-18
    • /
    • 1986
  • For identification and apportionment of sources emitting particulate matters in environment, the multi-elemental characterization of size-density fractionated particulate matters was carried out. Eight types of samples were tested; soil, flyash released from burning of bunker-Coil, diesel oil, coal, and soft coal, urban road-way dust, urban dust fall, and airborne particulate matter. The fractions of particulate matters obtained by heavy liquid separation methos with a series of dichloromethane-bromoform were then analyzed using atomic absorption spectrophotometry for Ni, Cr, Cu, An, Fe, Al, and Mg. Each sample showed a different concentration profile as a function of density, and a number of useful conclusions concerning characterization of elemental distribution were obtained. From the density distributions of elements in soil, the maximum value was found for all elements in the density range of 2.2 $\sim 2.9g.cm^{-3}$, including the density of $SiO_2$. However, the distribution of metallic compounds with the density lower than $2.2g.cm^{-3}$ was prevalent in urban roadway dust, urban dust fall, and airborne particulate matter. And the density distribution curves of these urban dusts also have the higher distribution at the density of 2.2 - 2.9g.cm^{-3}$, including the density of wind-blown silica. This tendency generally was prevalent in the natural source elements, such as Al, Fe, Mn, and Mg. The maximum values were found in the density ranges of 1.3 $\sim 2.2g.cm^{-3}$ from the density distribution of elements in oil fired flyash. These distributions of anthropogenic source elements, such as Zn, Ni, Cu, and Cr were higher predominately than those of natural source elements. And the higher distribution was found in the density range of $2.2 \sim 2.9g.cm^{-3}$ from the density distribution of elements in coal and soft-coal fired flyash. These distributions showed similar patterns to soil. But anthropogenic source elements somewhat predominated at the density ranges of $1.3 \sim 2.2g.cm{-3} and 2.9g.cm^{-3}$ to soil. Therefore the higher distribution of anthropogenic source elements in the density ranges of $1.3 \sim 2.2g.cm^{-3} and 2.9g.cm^{-3}$ was considered as anthropogenic origin.

  • PDF