• Title/Summary/Keyword: Element simulation

Search Result 4,550, Processing Time 0.035 seconds

Simulation of Honeycomb-Structured SiC Heating Elements (허니컴 구조 SiC 발열체 성능 평가 시뮬레이션)

  • Lee, Jong-Hyuk;Cho, Youngjae;Kim, Chanyoung;Kwon, Yongwoo;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.450-454
    • /
    • 2015
  • A simulation method to estimate microstructure dependent material properties and their influence on performance for a honeycomb structured SiC heating element has been established. Electrical and thermal conductivities of a porous SiC sample were calculated by solving a current continuity equation. Then, the results were used as input parameters for a finite element analysis package to predict temperature distribution when the heating element was subjected to a DC bias. Based on the simulation results, a direction of material development for better heating efficiency was found. In addition, a modified metal electrode scheme to decelerate corrosion kinetics was proposed, by which the durability of the water heating system was greatly improved.

The Direction Finding Ambiguity Analysis for 3 Element and 4 Element Phase Interferometer DF System (3소자 및 4소자 위상인터페로미터 방탐시스템의 방탐모호성분석)

  • Lee, Jung-Hoon;Woo, Jong-Myung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.544-550
    • /
    • 2014
  • In this paper, we have proposed a novel method which can analysis the direction finding ambiguity analysis for array geometry in 3 channel and 4 channel multiple baseline direction finding system. Generally, the direction finding ambiguity in the 3 element and 4 element phase interferometer direction finding system is calculated by the simulation for the array spacing or by the probability with the selected antenna array spacing. There are some restrictions to obtain the ambiguity of direction finding system in these methods. The former performs a simulation with every antenna array spacing and the latter calculates the ambiguity with the selected antenna array spacing. To overcome those restrictions, This paper proposed the novel method to calculate the ambiguity using the imaginary antenna array spacing and the phase difference prior to the modular operation in direction finder. Using the proposed method, we obtain the ambiguity probability for each of array geometry composed of multiple baseline. After performing the simulation with the selected antenna array spacing to verify the proposed method, we compared the calculated result data with the simulation data.

Sensitivity analysis for finite element modeling of humeral bone and cartilage

  • Bola, Ana M.;Ramos, A.;Simoes, J.A
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.71-84
    • /
    • 2016
  • The finite element method is wide used in simulation in the biomechanical structures, but a lack of studies concerning finite element mesh quality in biomechanics is a reality. The present study intends to analyze the importance of the mesh quality in the finite element model results from humeral structure. A sensitivity analysis of finite element models (FEM) is presented for the humeral bone and cartilage structures. The geometry of bone and cartilage was acquired from CT scan and geometry reconstructed. The study includes 54 models from same bone geometry, with different mesh densities, constructed with tetrahedral linear elements. A finite element simulation representing the glenohumeral-joint reaction force applied on the humerus during $90^{\circ}$ abduction, with external load as the critical condition. Results from the finite element models suggest a mesh with 1.5 mm, 0.8 mm and 0.6 mm as suitable mesh sizes for cortical bone, trabecular bone and humeral cartilage, respectively. Relatively to the higher minimum principal strains are located at the proximal humerus diaphysis, and its highest value is found at the trabecular bone neck. The present study indicates the minimum mesh size in the finite element analyses in humeral structure. The cortical and trabecular bone, as well as cartilage, may not be correctly represented by meshes of the same size. The strain results presented the critical regions during the $90^{\circ}$ abduction.

Press forming severity analysis and selection of optimum sheet steel properties for customer lines by using 3-D simulation program. (삼차원 프레스가공 시뮬레이션 기술을 활용한 수요가 가공공정 분석과 최적 재질선정)

  • 박기철;한수식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.111-131
    • /
    • 1996
  • In order to analyze stamping processes and to select optimum material properties of sheet steels for customer lines, 3-dimensional finite element analysis software were used. Commercial explicit finite element code, PAM-STAMP, was able to simulate 3-dimensional press formed parts with good accuracy and gave some useful results by orthogonal array experiments. Deformation of draw-bead were predicted by ABAQUS accurately, so that material selection for those parts by simulation were possible.

A Simulation System for the Automation of Logic Circuit Design (논리회로 설계 자동화를 위한 시뮬레이션 시스템)

  • 한창호
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.107-114
    • /
    • 1994
  • This paper describes an integrated environment for logic circuit simultion which is an important step of logic circuit design. The system consists of a logic simulator kernel, an expandible element routine library. a functional level element routine generator, several HDL input parsers, and a postprocessor. The system can simulate the same system in several levels of hierarchy. The experimental result shows that the system is very efficient and useful for design of logic circuits.

  • PDF

Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel (유한요소기반 다중스케일 연성파손모사 기법을 이용한 원주방향 균열이 존재하는 탄소강 실배관의 파손예측 및 검증)

  • Han, Jae-Jun;Bae, Kyung-Dong;Kim, Yun-Jae;Kim, Jong-Hyun;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.727-734
    • /
    • 2014
  • This paper describes multi-scale based ductile fracture simulation using finite element (FE) damage analysis. The maximum and crack initiation loads of cracked components were predicted using proposed virtual testing method. To apply the local approach criteria for ductile fracture, stress-modified fracture strain model was adopted as the damage criteria with modified calibration technique that only requires tensile and fracture toughness test data. Element-size-dependent critical damage model is also introduced to apply the proposed ductile fracture simulation to large-scale components. The results of the simulation were compared with those of the tests on SA333 Gr. 6 full-scale pipes at $288^{\circ}C$, performed by the Battelle Memorial Institute.

Development of a Finite Element Model for Crashworthiness Analysis of a Small-Sized Bus (소형버스 정면 충돌 특성 해석을 위한 유한요소 모델의 개발)

  • 김학덕;송주현;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.153-161
    • /
    • 2002
  • This paper develops a finite element model for crashworthiness analysis ova small-sized bus. The full vehicle finite element model is composed of 31,982 shell elements,599 beam elements,42 bar elements, and 34,204 nodes. The model uses four material models (such as elastic, elastic-plastic(steel), rigid. and elastic-plastic (rubber) material model) of PAM-CRASH. The model uses four contact types to define sliding interfaces in ten areas. A frontal crash test using an actual vehicle with 30mph velocity to a rigid barrier is carried out. Vehicle pulses at lower part of left and right b-pillar are measured, and deformed shapes of frame and driver seat's lower left area are photographed. A frontal crash simulation using the developed full vehicle finite element model is performed with PAM-CRASH installed in super computer SP2. The simulation is performed with the same conditions as the test. The measured vehicle pulses and photographed deformed shapes from the test are compared to ones from the simulation to validate the reliability of the developed model.

Numerical simulation of concrete abrasion induced by unbreakable ice floes

  • Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.

Numerical Simulation of the Delamination Behavior of Polymeric Adhesive Tapes Using Cohesive Zone Element (응집 영역 요소를 이용한 고분자 접착 테이프의 박리거동 모사)

  • Jang, Jinhyeok;Sung, Minchang;Yu, Woong-Ryeol
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.203-208
    • /
    • 2016
  • Metal and polymer sandwich composites, which are made of sheet metal sheath and polymer or fiber reinforced plastic core, have been reconsidered as an alternative to sheet metal due to their lightness and multifunctional properties such as damping and sound-proof properties. For the successful applications of these composites, the delamination prediction based on the adhesion strength is important element. In this study, the numerical simulation of the delamination behavior of polymeric adhesive tapes with metallic surfaces was performed using cohesive zone elements and finite element software. The traction-separation law of the cohesive zone element was defined using the fracture energy derived from peel mechanics and experimental results from peel test and implemented in finite element software. The peel test of the polymeric adhesive film against steel surface was simulated and compared with experiments, demonstrating reasonable agreement between simulation and experiment.

Validation of Efficient Welding Technique to Reduce Welding Displacements of Ships using the Elastic Finite Element Method

  • Woo, Donghan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.254-261
    • /
    • 2020
  • Welding is the most convenient method for fabricating steel materials to build ships and of shore structures. However, welding using high heat processes inevitably produces welding displacements on welded structures. To mitigate these, heavy industries introduce various welding techniques such as back-step welding and skip-step welding. These techniques effect on the change of the distribution of high heat on welded structures, leading to a reduction of welding displacements. In the present study, various cases using different and newly introduced welding techniques are numerically simulated to ascertain the most efficient technique to minimize welding displacements. A numerical simulation using a finite element method based on the inherent strain, interface element and multi-point constraint function is introduced herein. Based on several simulation results, the optimal welding technique for minimizing welding displacements to build a general ship grillage structure is finally proposed.