• 제목/요약/키워드: Element group

검색결과 1,213건 처리시간 0.029초

Projection Method에 의한 주조 해석용 접촉 요소망 생성 기법 (Contact Element Generation Method for Casting Analysis by using Projection Method)

  • 남정호;곽시영
    • 한국주조공학회지
    • /
    • 제40권6호
    • /
    • pp.146-150
    • /
    • 2020
  • In general, hot metal castings contract and molds expand during the cooling step of a casting process. Therefore, it is important to consider both the casting and mold at the same time in a casting process analysis. For a more accurate analysis that includes the contact characteristics, matching each node of the casting and mold in the contact area is recommended. However, it is very difficult to match the nodes of the casting and the mold when generating elements due to the geometric problem of CAD model data. The present study proposes a mesh generation technique that considers mechanical contact between the casting and the mold in a casting analysis (finite element analysis). The technique focuses on the fact that the mold surrounds the casting. After generating the 3D elements for the casting, the surface elements of the casting in contact with the mold are projected inside the mold to create contact elements that coincide with the contact surface of the casting. It was confirmed that high-quality contact element information and a 3D element net can be automatically generated by the method proposed in this study.

복합평판구조물의 고주파수 대역 유체/구조 연성 소음진동예측을 위한 에너지흐름유한요소해석 (Energy Flow Finite Element Analysis for High Frequency Acoustic and Vibrational Prediction of Complicated Plate Structures Considering Fluid-Structure Interaction)

  • 윤태흠;박영호
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.20-30
    • /
    • 2023
  • In this paper, the Energy Flow Finite Element Analysis (EFFEA) was performed to predict the acoustic and vibrational responses of complicated plate structures considering improved Fluid-Structure Interaction (FSI). For this, a new power transfer relationship was derived at the area junction where two different fluids are in contact on both sides of the plate. In order to increase the reliability of EFFEA of complicated plate structures immersed in a high-density fluid, the corrected flexural wavenumber and group velocity considering fluid-loading effect were derived. As the specific acoustic impedance of the fluid in contact with the plate increases, the flexural wavenumber of the plate increases. As a result, the flexural group velocity is reduced, and the spatial damping effect of the flexural energy density is increased. Additionally, for the EFFEA of arbitary-shaped built-up structures, the energy flow finite element formulation for the acoustic tetrahedral element was newly performed. Finally, for validation of the derived theory and developed software, numerical applications of complicated plate structures submerged in seawater or air were successfully performed.

CANONICAL LEFT CELLS AND THE SHORTEST LENGTH ELEMENTS IN THE DOUBLE COSETS OF WEYL GROUPS

  • Kwon, Nam-Hee
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.19-25
    • /
    • 2011
  • Let G be the general linear group GL(n,$\mathbb{C}$), $W_0$ the Weyl group of G and W the extended a neWeyl group of G. Then it is well-known that W is a union of the double cosets $W_{0x}W_0$ as x moves over the set of dominant weights of W. It is also known that each double coset $W_{0x}W_0$ contains a unique element $m_x$ of the shortest length. These shortest length elements belong to what are called the canonical left cells. However, it is still an open problem to find the canonical left cell containing a given $m_x$. One of the mai purposes of this paper is to introduce a new approach to attack this question. In particular, we will present a conjecture which explicitly describes the canonical left cells containing an element $m_x$. We will show that our conjecture is true for some specific types of $m_x$.

Nonlinear analysis of interaction between flexible pile group and soil

  • Liu, Jie;Li, Q.S.;Wu, Zhe
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.575-587
    • /
    • 2005
  • Using the nonlinear load transfer function for pile side soil and the linear load transfer function for pile end soil, a combined approach of the incremental load transfer matrix method and the approximate differential equation solution method is presented for the nonlinear analysis of interaction between flexible pile group and soil. The proposed method provides an effective approach for the solution of the nonlinear interaction between flexible pile group under rigid platform and surrounding soil. To verify the accuracy of the proposed method, a static load test for a nine-pile group under a rigid platform is carried out. The finite element analysis is also conducted for comparison purposes. It is found that the results from the proposed method match very well with those from the experimental test and are better in comparison with the finite element method.

집중 소자형 음의 군지연 회로 설계 (Analysis of Lumped Element Negative Group Delay Circuit)

  • 정용채;최흥재;김철동
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.374-379
    • /
    • 2010
  • In this paper, we have mathematically analyzed lumped element type negative group delay circuit (NGDC) and derived general design equation. The applicability of the proposed design equation is validated with mathematical and circuit simulation as well as with experimental results for intentional mobile telecommunication 2000 (IMT-2000) downlink band. As a design example, single branch NGDC with -0.8ns of group delay (GD) for narrow bandwidth of the specific frequency is simulated and fabricated. Finally, $\pi$-network NGDC is proposed and validated to obtain wideband GD response of $-1.7{\pm}0.06$ nsec for 60 MHz.

ON A CLASS OF TERNARY COMPOSITION ALGEBRAS

  • Elduque, Alberto
    • 대한수학회지
    • /
    • 제33권1호
    • /
    • pp.183-203
    • /
    • 1996
  • When dealing with a Lie group or, in general, with an analytic loop or quasigroup, its symmetry is broken by the election of the distinguished identity element.

  • PDF

Behavior of piled rafts overlying a tunnel in sandy soil

  • Al-Omari, Raid R.;Al-Azzawi, Adel A.;AlAbbas, Kadhim A.
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.599-615
    • /
    • 2016
  • The present research presents experimental and finite element studies to investigate the behavior of piled raft-tunnel system in a sandy soil. In the experimental work, a small scale model was tested in a sand box with load applied vertically to the raft through a hydraulic jack. Five configurations of piles were tested in the laboratory. The effects of pile length (L), number of piles in the group and the clearance distance between pile tip and top of tunnel surface (H) on the load carrying capacity of the piled raft-tunnel system are investigated. The load sharing percent between piles and rafts are included in the load-settlement presentation. The experimental work on piled raft-tunnel system yielded that all piles in the group carry the same fraction of load. The load carrying capacity of the piled raft-tunnel model was increased with increasing (L) for variable (H) distances and decreased with increasing (H) for constant pile lengths. The total load carrying capacity of the piled raft-tunnel model decreases with decreasing number of piles in the group. The total load carrying capacity of the piles relative to the total applied load (piles share) increases with increasing (L) and the number of piles in the group. The increase in (L/H) ratio for variable (H) distance and number of piles leads to an increase in piles share. ANSYS finite element program is used to model and analyze the piled raft-tunnel system. A three dimensional analysis with elastoplastic soil model is carried out. The obtained results revealed that the finite element method and the experimental modeling are rationally agreed.

Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete

  • Yaman, Ismail Ozgur;Akbay, Zekai;Aktan, Haluk
    • Computers and Concrete
    • /
    • 제3권6호
    • /
    • pp.423-437
    • /
    • 2006
  • Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.

유한요소/경계요소 연성해석을 통한 수중 구조기인소음 해석 (Underwater Structure-Borne Noise Analysis Using Finite Element/Boundary Element Coupled Approach)

  • 이두호;김현실;김봉기;이성현
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.789-796
    • /
    • 2012
  • 함정의 수중방사소음은 그 해석의 어려움이나 정확성에 있어서 매우 관심이 큰 문제이다. 본 논문에서는 구조물의 수중방사소음을 해석하기 위하여 유한요소/경계요소 연성해석법을 제안하였다. 제안된 방법은 헤름홀츠방정식에 대한 Burton-Miller 적분방정식에 기반하는 부가수 질량과 감쇠행렬을 이용하여 구조물의 구조-유체 연성응답을 해석하고 계산된 구조물의 응답으로부터 수중방사소음을 계산하는 순차적인 방법이다. 구조-유체연성작용의 구조해석은 상용소프트웨어인 MSC/NASTRAN 에 구조-유체연성효과 행렬을 추가하여 해석하는 방법으로 이루어졌고, 수중방사소음의 경우는 전용 소프트웨어를 개발하였다. 개발된 수중방사소음 해석법을 간단한 예제를 통하여 그 특성을 살피고, 실제 함정의 받침대 진동에 의한 수중방사소음의 계산에 적용하여 그 유용성을 보였다.

A property of surface groups

  • Moon, Myoung-Ho
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.825-829
    • /
    • 1996
  • We prove that if G is the fundamental group of a closed surface or a Seifert fibered space and K is a finitely generated subgroup of G, and if for any element g in G there exists an integer $n_g$ such that $g^{n_g}$ belongs to K, then K is of finite index in G.

  • PDF