• Title/Summary/Keyword: Element Geochemistry

Search Result 76, Processing Time 0.024 seconds

Petrology and Geochemistry of the Cretaceous Palgongsan Granite, Southern Korea (백악기(白堊紀) 팔공산(八公山) 화강암(花崗岩)의 암석학적(岩石學的) 및 지구화학적(地球化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.83-109
    • /
    • 1983
  • The Cretaceous Palgongsan granite is a typical, calc-alkaline, subsolvus monzogranite and shows characteristics of "I-type" granite by mineralogy and chemical composition. Many of the major and trace element characteristics of the Palgongsan granite are consistent with a relationship by fractional crystallisation to form a chemically zoned pattern. The granite show light REE enrichment with (Ce/Yb)N ratios of 5.78-9.50. All the REE patterns show Eu negative anomalies which become larger from the margin ($Eu/Eu^*=0.75$) to the core ($Eu/Eu^*=0.24$) of the pluton, mainly due to feldspar fractionation. Mineral geochemistry (alkali-feldspar, plagioclase & biotite) studies also show the zonal structure of the Palgongsan granite. The two-feldspar geothermometer shows that the temperature difference between the margin and the core part of the pluton is about $200^{\circ}C$ at various assumed pressures.

  • PDF

A Preliminary Study on the Potential Source of Cadmium in the Boseong-Jangheung Mine District (전남 보성-장흥 광화대의 잠정적 카드뮴원에 대한 예비연구)

  • Heo, Chul-Ho;So, Chil-Sup;Yun, Seong-Taek;Shim, Sang-Kyun
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.61-65
    • /
    • 1997
  • Cadmium occurs as a minor element in sphalerite ((Zn, Fe)S) from the Boseong-Jangheung gold-silver mine district. We analyzed the abundance of cadmium in sphalerite using an electron probe micro analyzer (EPMA) and discussed the natural sources of cadmium in terms of bedrock geochemistry, in order to preliminarily reconnoiter the potential cadmium contamination in mine districts. Cadmium contents of sphalerites from the Au-Ag mines (Bodeok, Mundeok, Jeonbo, Boknae, Keumsan) in the Boseong-Jangheung district are considerably high, compared with cadmium contents of sphalerites (average = 0.5 wt.% Cd, maximum = 4.4 wt.% Cd) in the world. Sphalerites from the Keumsan mine (average = 9.49 wt.% Cd, maximum=11.22 wt. Cd) are highly enriched in cadmium. Our data suggest that the Boseong-Jangheung area is an important potential site of cadmium contamination in Korea. Based on bedrock geochemistry, natural causes of cadmium enrichment in sphalerite from the mine district are thought to be the mixing of cadmium leached from organic-rich, metasedimentary rocks (including coal) and/or black shales. From this study, we propose that the pinpointing of potential sites of pollution by toxic heavy metals can be done effectively through detailed reconnaisance study on mineralogical compositions of ore minerals such as sphalerite from the mine area.

  • PDF

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.

Geochemical Enrichment and Migration of Environmental Toxic Elements in Stream Sediments and Soils from the Samkwang Au-Ag Mine Area, Korea (삼광 금-은광산 일대의 하상퇴적물과 토양내 함유된 독성원소의 지구화학적 부화와 이동)

  • Lee, Chan Hee;Lee, Byun Koo;Yoo, Bong-Cheal;Cho, Aeran
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 1998
  • Dispersion, migration and enrichment of environmental toxic elements from the Samkwang Au-Ag mine area were investigated based upon major, minor and rare earth element geochemistry. The Samkwang mine area composed mainly of Precambrian granitic gneiss. The mine had been mined for gold and silver, but closed in 1996. According to the X-ray powder diffraction, mineral composition of stream sediments and soils were partly variable mineralogy, which are composed of quartz, orthoclase, plagioclase, amphibole, muscovite, biotite and chlorite, respectively. Major element variations of the host granitic gneiss, stream sediments and soils of mining and non-mining drainage, indicate that those compositions are decrese $Al_2O_3$, $Fe_2O_3$, MgO, $TiO_2$, $P_2O_5$ and LOI with increasing $SiO_2$ respectively. Average compositional ranges (ppm) of minor and/or environmental toxic elements within those samples are revealed as As=<2-4500, Cd=<1-24, Cu=6-117, Sb=1-29, Pb=17-1377 and Zn=32-938, which are extremely high concentrations of sediments from the mining drainage (As=2006, Cd=l1, Cu=71, Pb=587 and Zn=481 ppm, respectively) than concentrations of the other samples and host granitic gneiss. Major elements (average enrichment index=6.53) in all samples are mostly enriched, excepting $SiO_2$, $Na_2O$ and $K_2O$, normalized by composition of host granitic gneiss. Rare earth element (average enrichment index=2.34) are enriched with the sediments from the mining drainage. Minor and/or environmental toxic elements within all samples on the basis of host rock were strongly enriched of all elements (especially As, Br, Cu, Pb and Zn), excepting Ba, Cr, Rb and Sr. Average enrichment index of trace elements in all samples is 15.55 (sediments of mining drainage=37.33). Potentially toxic elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) of the samples revealed that average enrichment index is 46.10 (sediments of mining drainage=80.20, sediments of nonmining drainage=5.35, sediments of confluent drainage=20.22, subsurface soils of mining drainage=7.97 and subsurface soils of non-mining drainage=4.15). Sediments and soils of highly concentrated toxic elements are contained some pyrite, arsenopyrite, sphalerite, galena and goethite.

  • PDF

Principles of Re-Os Isotopic System and Dating the Age of the Subcontinental Lithospheric Mantle Beneath Korean Peninsula (Re-Os 동위원소 시스템의 원리와 한반도 하부지각맨틀의 연령)

  • Lee Seung-Ryeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.106-117
    • /
    • 2006
  • Re-Os isotopic system, based on the long-lived $\beta^-$ transition of $^{187}Os(\lambda=1.67\times10^{-11}year^{-1})$ is being widely used in cosmochemistry and geochemistry. Along with the development of elemental separation and mass-spectrometric technique, the Re-Os isotopic system, like Sm-Nd, Rb-Sr, U-Th-Pb isotopic system, is now conventionally applied as a useful tool for absolute dating and isotoptc tracers. This paper introduces brief principles of Re-Os isotopic system and presents the general methodology fur dating the formation age of the subcontinental lithospheric mantle, based on the Re-Os isotopic data of the mantle xeonliths from South Korea.

Petrographic and Geochemical Characteristics of the Komatiite from the Gorgona Islands in the Pacific Ocean of the Colombia, South America (남미 콜롬비아의 태평양 연안 골고나 섬산 코마티아이트의 암석학적 및 지화학적 특징)

  • 진명식;신홍자
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.55-69
    • /
    • 2003
  • A spinifex textured komatiite sample of Early Tertiary age, from the Gorgona Islands of Colombia in South America, was petrographically and geochemically studied, and compared with the previous researches of the komatiites including other Precambrian komatiites in South Africa, Western Australia and Canada. The sample shows the komatiitic characteristics in its petrography and geochemistry very well, i.e. in high specific gravity (2.98) and density (3.2), rock forming minerals, spinifex texture, major and race element abundances and REE pattern. In particular the REE pattern for it strongly suggests that the Gorgona komatiite must have been crystallized from a magma generated from a depleted mantle as that of Munro Township area in Ontario, Canada which is pyroxenite komatiite or basaltic komatiite of Group I of the Archean.

A Possibility of Dual Volcanic Chains in the Southern Part of Korea: Evidences from Geochemistry (한국 남부의 쌍화산대 가능성: 지화학적 근거)

  • Jong Gyu;Jin Seop;Maeng Eon;Kyonghee
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.249-260
    • /
    • 2000
  • The development of dual volcanic chains, parallel to the trend of the subduction trench, is observed in the southern part of Korea. Elsewhere on the Earth volcanic arcs dominantly consist of two such chains. In the southern part of Korea, two volcanic chains within a single volcanic arc was developed. Kyongsang basin, where the first volcanic chain located, and Youngdong-Kwangju depression zone where the second volcanic zone located, showed sub-parallel volcanic rock distributed areas. Concentrations of incompatible elements in the southern part of Korea samples show clear across-arc variations, with lavas from the first volcanic chain being most depleted in these elements, all incompatible element concentrations increase towards the second volcanic chain. The above across-arc variation may be caused by the difference in solid phases coexisting with the fluid phases during the dehydration processes. The concentrations of incompatible elements, Zr/Y ratios, and Rb/K ratios indicate that the second volcanic chain (Youngdong-Kwangiu depression zone) was generated by low degrees of partial melting at the deeper depth compared to the conditions of the first volcanic chain (Kyongsang basin) and residual garnet probably attributed to the their partial melting.

  • PDF

Geochemistry and Petrogenesis of the Badwater Greenstones from Crystal Falls Terrane in Northeastern Wisconsin, U.S.A. (위스콘신주 북동부 지역에 분포하는 Badwater녹암에 대한 지화학적 연구)

  • Wee, Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.281-291
    • /
    • 1996
  • Samples of Badwater greenstones from the Crystal Falls terrane in northeastern Wisconsin have been analyzed for major, trace and rare earth elements. Geochemical characteristics of the rocks provide clues to the petrologic character and paleotectonic environment of basaltic magma generation. They have chemical composition typical of continental tholeiites. The low Mg values and abundances of Ni and Cr indicate that the lavas were extensively fractionated prior to extrusion. The variations of incompatible elements suggest that the rocks were affected by interaction with crustal rocks. The samples least affected by contamination have trace element compositions similar to those of T-type mid-ocean ridge basalts. The parent was modified by crustal contamination process and this process shifted the rock compositions to that of continental tholeiites as the rock evolved. Interpretations of the chemical characteristics of the rocks, based on modem analogs, favor their emplacement in an extensional tectonic regime.

  • PDF

Geochemistry of Trace and Rare Earth Elements from Coal-bearing Metapelites of the Ogcheon Supergroup at the Hoenam Area, Korea (회남지역(懷南地域)의 옥천누층군(沃川累層群)에 분포(分布)하는 탄질(炭質) 변성이질암(變成泥質岩)의 미량(微量) 및 희토류원소(稀土類元素) 지화학(地化學))

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.689-698
    • /
    • 1996
  • The coal-bearing metapelites from the Hoenam area are interbedded within the Ogcheon Supergroup, which are composed mainly of graphite, quartz, muscovite and associated with trace amount of biotite, chlorite, pyrite, rutile and barite. Although the formation was mined for coal, and the contents of V, U and Mo are a higher grade in coal formations than the host metapelites. The ratios of Al/Na and K/Na in coal formation are very heterogeneous and wide range from 10.28 to 90.91 and from 3.73 to 36.60, respectively. The V content increase with increasing Al and Ba contents, but the U and Mo are not related with other elements. Those are suggested that controlled of mineral compositions in coaly metapelites due to substitution, migration and reequilibrium of elements by regional metamorphism. These coal formation were deposited in basin of marine environments and the REE of these rocks are not influenced with metamorphism and hydrothermal alterations on the basis of Al content versus La, La against Ce, the ratios of La/Ce (0.23 to 0.73) and Th/U (0.03 to 16.6). These rocks also show much variation in $La_N/Yb_N$ (0.53 to 14.19), Th/Yb (0.51 to 6.00) and La/Th (0.15 to 18.92), and their origin is explained by derivation from a mixture of sedimentary and metasedimentary rocks. The wide range in trace and REE element characteristics as Co/Th (0.07 to 3.00), La/Sc (0.04 to 23.48), Sc/Th (0.06 to 7.57), V/Ni (2 to 3319), Cr/V (0.03 to 1.06) and Ni/Co (1.00 to 79.85) of these coaly metapelites argues for inefficient mixing of the various source lithologies during sedimentation.

  • PDF

Geochemistry and Petrogenesis of Pan-african Granitoids in Kaiama, North Central, Nigeria

  • Aliyu Ohiani Umaru;Olugbenga Okunlola;Umaru Adamu Danbatta;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.259-275
    • /
    • 2023
  • Pan African granitoids of Kaiama is comprised of K-feldspar rich granites, porphyritic granites, and granitic gneiss that are intruded by quartz veins and aplitic veins and dykes which trend NE-SW. In order to establish the geochemical signatures, petrogenesis, and tectonic settings of the lithological units, petrological, petrographical, and geochemical studies was carried out. Petrographic analysis reveals that the granitoids are dominantly composed of quartz, plagioclase feldspar, biotite, and k-feldspar with occasional muscovites, sericite, and opaque minerals that constitute very low proportion. Major, trace, and rare earth elements geochemical data reveal that the rocks have moderate to high silica (SiO2=63-79.7%) and alumina (Al2O3=11.85-16.15) contents that correlate with the abundance of quartz, feldspars, and biotite. The rocks are calc-alkaline, peraluminous (ASI=1.0-<1.2), and S-type granitoids sourced by melting of pre-existing metasedimentary or sedimentary rocks containing Al, Na, and K oxides. They plot dominantly in the WPG and VAG fields suggesting emplacement in a post-collisional tectonic setting. On a multi-element variation diagram, the granitoids show depletion in Ba, K, P, Rb, and Ti while enrichment was observed for Th, U, Nd, Pb and Sm. Their rare-earth elements pattern is characterized by moderate fractionation ((La/Yb)N=0.52-38.24) and pronounced negative Eu-anomaly (Eu/Eu*=0.02-1.22) that points to the preservation of plagioclase from the source magma. Generally, the geochemical features of the granitoids show that they were derived by the partial melting of crustal rocks with some input from greywacke and pelitic materials in a typical post-collisional tectonic setting.