• 제목/요약/키워드: Electrostatic Micro-motor

검색결과 2건 처리시간 0.015초

Actuating Characteristics of Electrostatic Micro-motors

  • Kim, Young-Cheol;Kim, Byung-Ok
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.53-65
    • /
    • 2003
  • Electrostatic micro-motors can be divided into three classes: (i) salient type side drive motor, (ii) radial gap type wobble motor, (iii) axial gap type wobble motor. The working mechanism, torque evaluation, fabrication, and operational characteristics of each micro motors are compared. It is proved that axial gap type wobble motor has the bigger generating torque than that of the other type. The gear ratio of wobble motors increases the driving torque at the cost of a decreasing angular speed and decreases the friction because of the rolling motion instead of sliding at the bearing. Techniques for characterizing micro-motors performance are presented.

  • PDF

마이크로 모터의 자동화된 FEA 시뮬레이션 (Automated FEA Simulation of Micro Motor)

  • Lee Joon-Seong
    • 한국시뮬레이션학회논문지
    • /
    • 제11권3호
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF