• Title/Summary/Keyword: Electroplating method

Search Result 143, Processing Time 0.022 seconds

Microemulsions in Supercritical Carbon Dioxide Utilizing Nonionic Surfactants (초임계 이산화탄소내 비이온성 계면활성제를 이용한 마이크로에멀젼 형성연구)

  • Koh, Moonsung;Yoo, Jaeryong;Park, Kwangheon;Kim, Hongdoo;Kim, Hakwon
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.221-228
    • /
    • 2004
  • Ethoxylated Nonyl Phenol Series (NP-series), nonionic surfactants, were applied for forming microemulsions in supercritical $CO_2$. Measurement results of the solubility in supercritical $CO_2$ are in the following; NP-series were high soluble in carbon dioxide in spite of the fact that those were not $CO_2$-philic surfactants traditionally well known. Water in $CO_2$ microemulsions were also formed stably. A complexation of hydrophilic lengths for $CO_2$-philic parts of NP-Series surfactants was optimized by NP-4 surfactant(N=4) for forming the microemulsions through the experiments. Formation of microemulsions was confirmed by measuring the UV-Visible spectrum through a spectroscopic method and existence of water in the microemulsions was confirmed as well. In order to apply it for a metal surface treatment or electroplating, an experiment for forming acid(organic, inorganic) solution in $CO_2$ microemulsions was carried out. Ionic surfactant in the reaction to an acid solution became unstable to form microemulsions, however, nonionic surfactant was formed stably in the reaction. Results of the study will be utilized for expanding the application scope of supercritical $CO_2$ which is an environmental-friendly solvent.

  • PDF

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.