• Title/Summary/Keyword: Electroosmotic flow

Search Result 67, Processing Time 0.026 seconds

The Relationship between Electroosmotic Drainage and Zeta Potential of Contaminated Clayey Soil with Heavy Metal (중금속 오염 점성토의 전기삼투 배수와 제타포텐셜의 상관성)

  • 임성철;한상재;김정환;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.455-460
    • /
    • 2000
  • This research is about the relationship of electroosmotic drainage and zeta potential. Two laboratory experiments were conducted, at first a constant 16 voltage was applied to the cylindrical consolidated specimen of 10cm in diameter, 16cm in length at the concentration of 0, 500, 3000ppm Pb(II) and electroosmotic flow was measured for 12days. Then, zeta potential of kaolinite suspension was measured at the same concentration of electroosmotic permeability experiments in the range of pH from 2 to 14. From the result of this study, it was shown that zeta potential was dependent on the concentration of electrolyte and pH, was proportional to coefficient of electroosmotic permeability. According to the compared result of electroosmotic drainage, as the concentration of Pb(II) was low, the negative value of zeta potential was high and electroosmotic total flow was much.

  • PDF

Visualization of the two-layered electroosmotic flow and its EHD instability in T-channels by micro PIV

  • Kang Kwan Hyoung;Shin Sang Min;Lee Sang Joon;Kang In Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.75-78
    • /
    • 2003
  • An interfacial instability has recently been observed for the DC- and AC-powered electroosmotic flows of the two miscible electrolyte layers having different concentrations in microchannels. It is rather contrary to our common belief that the flow inside a microchannel is generally stable due to the dominant role of the viscous damping. In this work, we visualized the electroosmotic flow inside a T-channel to validate the numerical predictions. It is clearly shown that the strong vortices (which characterize the interface shapes) are generated at the interface of the two fluids, as was predicted in the numerical analysis.

  • PDF

Numerical Analysis on Mixing in a Microchannel with Inhomogeneous Surface Charge (불균일 표면전하를 지닌 미소채널 내에서의 혼합에 관한 수치 해석적 연구)

  • Song, Kyung-Suk;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1004-1009
    • /
    • 2003
  • Electroosmotic flow induced by an applied electrostatic potential field in microchannel is analyzed in this study. The electroosmotic flow is an alternative to pressure driven flow in microchannels, but the usage has been limited to the simple cases. In this study, We analyze electroosmotic flow driven by inhomogeneous surface charge on the channel wall. The surface charge varies along a direction perpendicular to the electric field in order to generate the electroosmotic flow. A numerical results substantiate the highly efficient mixing performance. It is highly the beneficial to fabrication process since only straight microchannel rather than complex geometry is enough to yield efficient mixing.

  • PDF

A Numerical Model for Non-Equilibrium Electroosmotic Flow in Micro- and Nanochannels (마이크로/나노 채널에서의 비평형 전기삼투 유동 모사를 위한 수치모델)

  • Kwak Ho Sang;Jr. Ernest. F. Hasselbrink,
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.161-164
    • /
    • 2004
  • A finite volume numerical model is developed for simulating non-equilibrium electroosmotic flow in micro- and nanochannels. The Guoy-Chapman model is adopted to compute the flow and electric potential. The Nernst-Planck equation is employed to trace unsteady transports of ionic species, i.e., time-dependent net charge density. A new set of boundary conditions based on surface charge density are designed rather than using the conventionally-employed zeta potential. A few issues for an efficient computation of electroosmotic flows are discussed. Representative computational examples are given to illustrate the robustness of the numerical model.

  • PDF

Characteristics of Electroosmotic Pump with Cylindrical Porous Glass Frits (원통형 다공성 유리막을 이용한 전기삼투 펌프의 연구)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.619-624
    • /
    • 2012
  • In this study, we demonstrated the operation of an electroosmotic pump with cylindrical porous glass frits and evaluated its long-term operation. The performance of this electroosmotic pump was characterized in terms of maximum flow rate, current, and pressure using deionized water and 1 mM borate buffer. The maximum flow rate, current, and pressure linearly increase with voltage. The maximum flow rate is normalized by the pumping area and voltage for comparison of the performance between the electroosmotic pumps with cylindrical and planar frits. The normalized maximum flow rate of the cylindrical-type pump is higher than that of the planar-type pump because of their different geometries. The cylindrical-type electroosmotic pump has five times better performance than the planartype electroosmotic pump for a given pump package volume. It can operate stably for over 3 hours.

Lifetime Prolongation of Poly (dimethylsiloxane) Surface Modification via 2-Hydroxyethyl Methacrylate Grafting for Electroosmotic Flow

  • Park, Eun-Soo;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.142-144
    • /
    • 2004
  • To use Poly-dimethylsiloxane (PDMS) for the electrokinetic flow channel, the PDMS surface must be modified to be hydrophilic. With $O_2$ plasma treatment, it is difficult to maintain hydrophilicity for more than one day. In this paper, we present the chemical modification of the PDMS surface using 2-Hydroxyethyl methacrylate (HEMA) to prolong hydrophilicity lifetime. The oxide radicals generated temporarily on the PDMS surface by $O_2$ plasma are grafted with HEMA. Once the PDMS samples have been grafted, they demonstrate improved hydrophilicity retainment and electroosmotic flow characteristics compared to the untreated PDMS and the oxidized PDMS following the $O_2$ plasma process. This phenomenon was verified by the contact angles, Fourier transform infrared (FTIR) spectra and electro osmotic flow rates observed for more than 300 hours.

Development of electroosmotic flow control technique in micro fluidic devices (전기 삼투를 이용한 미세 유체 소자에서의 유량 제어 기술 개발)

  • Choi, Eun-Soo;Jeong, Dae-Joong;Sim, Won-Chul;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1991-1993
    • /
    • 2002
  • This paper presents the PDMS surface characteristic change after the plasma process and the electroosmotic flow control technique for the two-dimensional focusing in the micro channels made of PDMS and glass. The channels are fabricated by plastic molding and micromachining technique. To observe the surface characteristic change as time elapses, we measure the contact angle of water on the surface and the velocity of the electroosmotic flow in a channel. The electric field adequate for focusing of a core flow in a confluence channel is obtained by the experiment. The computer simulation is performed to obtain the width and the depth of the core flow for several junction angles of the confluence channel.

  • PDF

Analysis of fluid flow in EK pumps (EK Pumps 내의 유동 해석에 관한 연구)

  • Min, Jung-Yim;Kim, Sung-Jin;Kim, Duck-Jong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1857-1862
    • /
    • 2004
  • EK pumps packed with particles inside capillaries are involved in the mixed electroosmotic flow and pressure driven flow. For analysis in the porous EK pumps, the volume-averaging technique is applied to derive the volume-averaged equations for momentum and electrical potential. By using the volume-averaged equations, analytical solutions for electric potential and velocity distribution due to the mixed electroosmotic and pressure driven flows are obtained. The present analysis is validated by comparison with numerical and experimental results for the case of microchannel EK pumps.

  • PDF

Unsteady Electroosmotic Channel Flows with the Nonoverlapped and Overlapped Electric Double Layers

  • Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2250-2264
    • /
    • 2006
  • In micro- and nanoflows, the Boltzmann distribution is valid only when the electric double layers (EDL's) are not overlapped and the ionic distributions establish an equilibrium state. The present study has numerically investigated unsteady two-dimensional fully-developed electroosmotic flows between two parallel flat plates in the nonoverlapped and overlapped EDL cases, without any assumption of the Boltzmann distribution. For the study, two kinds of unsteady flows are considered: one is the impulsive application of a constant electric field and the other is the application of a sinusoidally oscillating electric field. For the numerical simulations, the ionic-species and electric-field equations as well as the continuity and momentum ones are solved. Numerical simulations are successful in accurately predicting unsteady electroosmotic flows and ionic distributions. Results show that the nonoverlapped and overlapped cases are totally different in their basic characteristics. This study would contribute to further understanding unsteady electroosmotic flows in micro- and nanofluidic devices.

Study on Basic Performance Test of Electroosmotic Pump with Porous Glass Slit. (다공성 유리 슬릿 EO펌프 기초 성능 측정 연구)

  • Seo, Sang-Tae;Park, Cheol-Woo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.59-62
    • /
    • 2007
  • The basic concept and preliminary performance results of a miniaturized electroosmotic (EO) pump with diaphragms were included in the present study. The separation of an electroosmotic pumping liquid from a drug using diaphragms is mainly to have a freedom in choosing an electroosmotic pumping liquid and to achieve the optimal drug delivery, and, preferably its precise control. We performed maximum flow rate, maximum pressure, and maximum current measurements with and without diaphragm designs. As a result, the effect of diaphragms on pump performance at the maximum condition is small. However, the presence of diaphragms does not allow indefinite continuous pumping.

  • PDF