• Title/Summary/Keyword: Electroosmotic

Search Result 79, Processing Time 0.032 seconds

2차원 토양 실험장치에서 동전기-펜턴 공정의 이해

  • 양지원;박지연;김상준;이유진;기대정
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.310-313
    • /
    • 2003
  • Removal of phenanthrene by electrokinetic method combined with Fenton-like process was studied in a model system. The scale of reactor was 120 cm in length, 10 cm in width, and 50 cm in height. Sand was selected as a model soil. Bentonite was filled in the space between reservoir and contaminated soil to control the flow rate of water. When constant voltage of 100 V was applied to this system, current varied from 1000 mA to 290 mA for 28 days. pH of anode and cathode reservoirs became to 2 and 13, respectively. Removal efficiency of phenanthrene was more than 60 %.

  • PDF

The Behavior of Anionic Surfactant Calfax 16L-35 in Electrokinetic Remediation

  • 양지원;이유진;박지연;김상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.306-309
    • /
    • 2003
  • Surfactant-enhanced electrokinetic (EK) remediation is an emerging technology that can effectively remove hydrocarbons from low-permeability soils. In this study, the electrokinetic remediation using Calfax 16L-35 was conducted for the removal of phenanthrene from kaolinite. An anionic surfactant Calfax 16L-35 was used at concentrations of 5, 15, and 30g/L to enhance the solubility of phenanthrene. When the surfactant solution was applied to EK system, low electrical potential gradient was maintained because of its ions. Even when the surfactant concentration was high, the removal efficiency of phenanthrene was low After the operation, most of surfactants were remained in soil and there were few in effluent. This phenomena was observed because the migration of Calfax 16L-35 from cathode to anode was predominant over electroosmotic flow which moved in opposite direction. Therefore, the anionic surfactant Calfax 16L-35 is considered to be improper in surfactant - enhanced electrokinetic remediation.

  • PDF

Numerical Analysis of Electroosmotically Enhanced Microchannel Heat Sinks (전기삼투를 이용한 미세열방출기의 수치해석)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2544-2547
    • /
    • 2008
  • A micro channel heat sink has been studied and optimized for mixed pressure driven and electroosmotic flows through three-dimensional numerical analysis. The effects of ionic concentration represented by zeta potential and Debye thickness are studied with the various steps of externally applied electric potential. Optimization of the micro channel heat sink has been performed considering two design variables related to the micro channel width, depth and fin width. The surrogate-based optimization is performed using a search algorithm taking overall thermal resistance as objective function. The thermal resistance is found to be more sensitive to channel width-to-depth ratio than fin width-to-depth of channel ratio.

  • PDF

Nonaqueous Capillary Electrophoresis of Chlorinated Phenols

  • 김보정;전만석;신상무;정두수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1483-1486
    • /
    • 1999
  • The contents of pentachlorophenol (PCP) and 2,3,5,6-tetrachlorophenol (TeCP) in textile products are regulated for safety. Since an organic solvent such as 2-methoxyethanol is needed to extract chlorinated phenols from textile samples, nonaqueous capillary electrophoresis has been applied to achieve the separation of PCP and isomers of TeCP. The run buffer was 100 mM Tris/acetate in methanol whose pH was adjusted to 8.0. All of the analytes were negatively charged at pH 8.0 and their electrophoretic velocities were higher than the electroosmotic flow of the methanol buffer. A reverse voltage of -20 kV was applied along a 27-cm fused silica capillary with ID of 50 μm, and PCP and 3 TeCP isomers were separated based on the difference in $pK_a$ values in less than 4 min. The limits of detection (S/N = 3) were about 0.02 μM. By varying pH of the methanol run buffer, $pK_a$ values of the 4 chlorinated phenols were also estimated.

Modulation of electroosmosis using penetration enhancers

  • Kim, Su-Youn;Lee, Yeon-Joo;Lee, Hyung-Won;Lee, Hyo-Jung;Lee, Seung-Yeon;Youe, Jee-Sun;Oh, Seaung-Youl
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.293.1-293.1
    • /
    • 2003
  • Electroosmotic flux during iontophoresis originates due to the net negative charge of the current passing channels (pores) in skin at physiological pH (pH 7.4). Thus, the channels are permselective to cations, and this causes the convective solvent flow from anode to cathodal direction. This solvent flow facilitates the flux of cations (from anode), inhibits that of anions (from cathode), and enables theenhanced transport of neutral, polar solutes. (omitted)

  • PDF

Effect of Polyethlene Glycols on the Electroosmosis Through Skin

  • Lee, Seung-Yeon;Kim, Su-Youn;Youe, Jee-Sun;Min, Hye-Ran;Han, Jeong-Jin;Oh, Seaung-Youl
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.233.3-234
    • /
    • 2003
  • Electroosmotic flux during iontophoresis originates due to the net negative charge of the current passing channel (pores) in skin at physiological pH (pH 7.4). Thus, the channel is permselective to cations, and this causes the convective solvent flow, from anode to cathode direction. This solvent flow facilitates the flux of cations (from anode), inhibits that of anions (from cathode), and enables the enhanced transport of neutral, polar solutes. In this work, we have investigated the effect of a series of polyethylene glycols (PEGs) with different molecular weights on the electroosmtic flow to get more detail understanding of this phenomena. (omitted)

  • PDF

MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis (마이크로 칩 전기영동에 응용하기 위한 다결정 실리콘 층이 형성된 마이크로 채널의 MEMS 가공 제작)

  • Kim, Tae-Ha;Kim, Da-Young;Chun, Myung-Suk;Lee, Sang-Soon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.513-519
    • /
    • 2006
  • We developed two kinds of the microchip for application to electrophoresis based on both glass and quartz employing the MEMS fabrications. The poly-Si layer deposited onto the bonding interface apart from channel regions can play a role as the optical slit cutting off the stray light in order to concentrate the UV ray, from which it is possible to improve the signal-to-noise (S/N) ratio of the detection on a chip. In the glass chip, the deposited poly-Si layer had an important function of the etch mask and provided the bonding surface properly enabling the anodic bonding. The glass wafer including more impurities than quartz one results in the higher surface roughness of the channel wall, which affects subsequently on the microflow behavior of the sample solutions. In order to solve this problem, we prepared here the mixed etchant consisting HF and $NH_4F$ solutions, by which the surface roughness was reduced. Both the shape and the dimension of each channel were observed, and the electroosmotic flow velocities were measured as 0.5 mm/s for quartz and 0.36 mm/s for glass channel by implementing the microchip electrophoresis. Applying the optical slit with poly-Si layer provides that the S/N ratio of the peak is increased as ca. 2 times for quartz chip and ca. 3 times for glass chip. The maximum UV absorbance is also enhanced with ca. 1.6 and 1.7 times, respectively.

Development of Porous Silicon Electro-osmotic Pumps for High Flow Rate Per Current Flow Delivery of Organic Solvents (단위전류당 고유량 유기용매 이송을 위한 다공성 실리콘막 전기침투 펌프의 개발)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Two types of electro-osmotic pumps were prepared: with anodized and DRIE porous silicon. The pump performance was characterized for both types in terms of flow rate and flow rate per current using organic solvents. Both types of electro-osmotic pumps showed a better performance compared to porous glass electro-osmotic pumps. The DRIE porous silicon electro-osmotic pump especially demonstrated an excellent flow rate and flow rate per current performance. The DRIE porous silicon electro-osmotic pump is expected to help in the development of electro-osmotic pumps and micropumps in general due to the recently widespread availability of DRIE processes.

Study on the Effect of the SDS on the Behavior of Anionic Surfactants in Electrophoresis (전기영동에서 SDS가 음이온 계면활성제의 거동에 미치는 영향에 대한 고찰)

  • Lee, Ji-Eun;Lee, Myeong-Sok;Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.356-363
    • /
    • 2001
  • A basic study of the effect of the SDS on the behavior of the anionic surfact in electrophoresis was performed. Having been interacted with SDS micelle, long chain carboxylates and sulfonates which have more than 10 carbons have been suffered larger changes in their apparent mobilities. Based on the result of the comparison among apparent, electroosmotic and electrophoretic mobilities, it is demonstrated that the major cause for the variation of the apparent mobilities of the anions is the variation of the electrophoretic mobilities.

  • PDF

Fabrication of electro phoresis microchips and effects of channel surface properties (마이크로 전기영동 소자의 제작과 유로 면 특성에 따른 전기삼투 및 전기영동 효과)

  • Kim, Min-Su;Cho, Seung-Il;Lee, Kook-Nyung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.286-289
    • /
    • 2003
  • We investigated the influence of the properties of substrate material on the separation efficiency in microchip electrophoresis. We fabricated the various microchips and studied separation efficiency in microchannels composed of a single material such as quartz, glass, polydimethylsiloxane (PDMS), and polymethylmetha crylate (PMMA), as well as hybrid micro channels composed of different materials. New fabrication process for glass chip was suggested and some treatment is added to improve fabrication process in other chip. Separation efficiency was compared by measuring migration times and bandwidths of EOF and analytes in each microchip. The efficiency is the function of migration time, which is affected by the electroosmotic flow (EOF), and bandwidth of an analyte. EOF is highly dependent upon the characteristics of a microchannel wall surface. Migration time was more reproducible in silica chips than that of PDMS chip and more band broadening was observed in the microchip composed of hybrid material due to non-uniformity of surface charge density at the walls of the channel.

  • PDF