• 제목/요약/키워드: Electroosmotic

검색결과 79건 처리시간 0.031초

중금속 오염 점성토의 전기삼투 배수와 제타포텐셜의 상관성 (The Relationship between Electroosmotic Drainage and Zeta Potential of Contaminated Clayey Soil with Heavy Metal)

  • 임성철;한상재;김정환;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.455-460
    • /
    • 2000
  • This research is about the relationship of electroosmotic drainage and zeta potential. Two laboratory experiments were conducted, at first a constant 16 voltage was applied to the cylindrical consolidated specimen of 10cm in diameter, 16cm in length at the concentration of 0, 500, 3000ppm Pb(II) and electroosmotic flow was measured for 12days. Then, zeta potential of kaolinite suspension was measured at the same concentration of electroosmotic permeability experiments in the range of pH from 2 to 14. From the result of this study, it was shown that zeta potential was dependent on the concentration of electrolyte and pH, was proportional to coefficient of electroosmotic permeability. According to the compared result of electroosmotic drainage, as the concentration of Pb(II) was low, the negative value of zeta potential was high and electroosmotic total flow was much.

  • PDF

Unsteady Electroosmotic Channel Flows with the Nonoverlapped and Overlapped Electric Double Layers

  • Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2250-2264
    • /
    • 2006
  • In micro- and nanoflows, the Boltzmann distribution is valid only when the electric double layers (EDL's) are not overlapped and the ionic distributions establish an equilibrium state. The present study has numerically investigated unsteady two-dimensional fully-developed electroosmotic flows between two parallel flat plates in the nonoverlapped and overlapped EDL cases, without any assumption of the Boltzmann distribution. For the study, two kinds of unsteady flows are considered: one is the impulsive application of a constant electric field and the other is the application of a sinusoidally oscillating electric field. For the numerical simulations, the ionic-species and electric-field equations as well as the continuity and momentum ones are solved. Numerical simulations are successful in accurately predicting unsteady electroosmotic flows and ionic distributions. Results show that the nonoverlapped and overlapped cases are totally different in their basic characteristics. This study would contribute to further understanding unsteady electroosmotic flows in micro- and nanofluidic devices.

다공성 유리 슬릿 EO펌프 기초 성능 측정 연구 (Study on Basic Performance Test of Electroosmotic Pump with Porous Glass Slit.)

  • 서상태;박철우
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.59-62
    • /
    • 2007
  • The basic concept and preliminary performance results of a miniaturized electroosmotic (EO) pump with diaphragms were included in the present study. The separation of an electroosmotic pumping liquid from a drug using diaphragms is mainly to have a freedom in choosing an electroosmotic pumping liquid and to achieve the optimal drug delivery, and, preferably its precise control. We performed maximum flow rate, maximum pressure, and maximum current measurements with and without diaphragm designs. As a result, the effect of diaphragms on pump performance at the maximum condition is small. However, the presence of diaphragms does not allow indefinite continuous pumping.

  • PDF

원통형 다공성 유리막을 이용한 전기삼투 펌프의 연구 (Characteristics of Electroosmotic Pump with Cylindrical Porous Glass Frits)

  • 권길성;김대중
    • 대한기계학회논문집B
    • /
    • 제36권6호
    • /
    • pp.619-624
    • /
    • 2012
  • 본 논문에서는 원통형 다공성 유리막을 이용한 전기삼투 펌프의 실험적 연구를 수행하였고, 장시간 작동을 평가하였다. 전기삼투 펌프의 성능은 탈이온수와 1 mM 붕산염 완충액을 이용하여 최대유량, 최대전류, 그리고 최대압력으로 표현하였다. 최대유량, 최대전류, 그리고 최대압력은 모두 이론에서 예측하는 것과 같이 전압이 증가할 때 선형적으로 증가하였다. 최대유량을 유체의 펌핑면적과 적용 전압으로 나눈 표준화 유량을 사용하여 원통형 다공성 유리막을 이용한 전기삼투 펌프와 평면형 다공성 유리막을 이용한 전기삼투 펌프의 성능을 비교하였다. 표준화 유량은 원통형 다공성 유리막을 이용할 때 평면형 다공성 유리막보다 대략 1.5 배 높은 값을 가졌고, 이는 원통형 다공성 유리막과 평면형 다공성 유리막의 기하학적 부분의 차이에 의한 것으로 판단되었다. 표준화 유량 값을 이용하여 동일한 전기삼투 펌프 부피에서 두 다공성 막을 비교하면, 원통형 전기삼투 펌프는 평면형 전기삼투 펌프에 비해 최대 원주율만큼의 펌핑면적을 증가할 수 있으므로 5 배 높은 유량을 얻었다. 원통형 전기삼투 펌프의 내부 전극에서 전기분해에 의해 발생하는 가스들은 나피온 튜브를 통하여 효과적으로 배출되었고, 이로 인해 3 시간 이상의 작동에서 성능의 감소는 발생되지 않았다.

다공성 흡수매체에 대한 정전삼투 탈수효과 (Electroosmotic Water Removal in Wet Porous Materials)

  • 박선미;박미정;하지수;장혁상
    • 청정기술
    • /
    • 제16권2호
    • /
    • pp.145-152
    • /
    • 2010
  • 함수매체에 대한 효율적 탈수를 위해 에너지 효율적인 여러 탈수공정이 적용되고 있다. 본 연구에서는 탈수공정에서 에너지 소모를 줄이기 위한 방법으로 적용되고 있는 정전삼투효과를 연구하였다. 정전삼투공정을 연구하기 위한 실험용 정전삼투반응기가 구성되었고 공정변수인 전기장의 형태, 흡수매체의 성질 등의 영향이 조사연구 되었다. 정전삼투공정을 위해 매체에 인가된 전기장은 최대전압 100 V/cm 및 최고주파수 10 kHz 범위를 가진 3가지 파형의 직류전압이 사용되었으며 실험용 흡수매체는 직경 0.18 mm, 0.35 mm, 1.2mm 유리비드로 충진된 모사형 흡수매체를 사용하였다. 운전조건에 따라 차이가 있으나 정전삼투에 의해 최대 6%의 함수제거율을 획득하였으며 제습에 소요전력은 조건에 따라 다르나 약 330~490 cal/g-water의 값을 유지하였다.

마이크로/나노 채널에서의 비평형 전기삼투 유동 모사를 위한 수치모델 (A Numerical Model for Non-Equilibrium Electroosmotic Flow in Micro- and Nanochannels)

  • 곽호상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.161-164
    • /
    • 2004
  • A finite volume numerical model is developed for simulating non-equilibrium electroosmotic flow in micro- and nanochannels. The Guoy-Chapman model is adopted to compute the flow and electric potential. The Nernst-Planck equation is employed to trace unsteady transports of ionic species, i.e., time-dependent net charge density. A new set of boundary conditions based on surface charge density are designed rather than using the conventionally-employed zeta potential. A few issues for an efficient computation of electroosmotic flows are discussed. Representative computational examples are given to illustrate the robustness of the numerical model.

  • PDF

Visualization of the two-layered electroosmotic flow and its EHD instability in T-channels by micro PIV

  • Kang Kwan Hyoung;Shin Sang Min;Lee Sang Joon;Kang In Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.75-78
    • /
    • 2003
  • An interfacial instability has recently been observed for the DC- and AC-powered electroosmotic flows of the two miscible electrolyte layers having different concentrations in microchannels. It is rather contrary to our common belief that the flow inside a microchannel is generally stable due to the dominant role of the viscous damping. In this work, we visualized the electroosmotic flow inside a T-channel to validate the numerical predictions. It is clearly shown that the strong vortices (which characterize the interface shapes) are generated at the interface of the two fluids, as was predicted in the numerical analysis.

  • PDF

불균일 표면전하를 지닌 미소채널 내에서의 혼합에 관한 수치 해석적 연구 (Numerical Analysis on Mixing in a Microchannel with Inhomogeneous Surface Charge)

  • 송경석;이도형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1004-1009
    • /
    • 2003
  • Electroosmotic flow induced by an applied electrostatic potential field in microchannel is analyzed in this study. The electroosmotic flow is an alternative to pressure driven flow in microchannels, but the usage has been limited to the simple cases. In this study, We analyze electroosmotic flow driven by inhomogeneous surface charge on the channel wall. The surface charge varies along a direction perpendicular to the electric field in order to generate the electroosmotic flow. A numerical results substantiate the highly efficient mixing performance. It is highly the beneficial to fabrication process since only straight microchannel rather than complex geometry is enough to yield efficient mixing.

  • PDF

교류 전기삼투유동 - 근본 메커니즘과 운동학적 양상 (AC-Electroosmotic Flows-Fundamental Mechanism and Kinematic Aspects)

  • 서용권
    • 한국가시화정보학회지
    • /
    • 제6권1호
    • /
    • pp.3-16
    • /
    • 2008
  • Controlling fluid flows in micro scales is a non-trivial issue among those who are involved in designing lab-on-chips. Pumping and mixing by using electrokinetic principles has been popular in that the method requires a few parts and it is easy to control. This paper explains the basic mechanism of the electroosmotic flows caused by AC together with presenting some numerical results. In particular, the fundamental, physical idea involved in the mechanism will be illustrated in terms of the kinematic aspect. Since the electroosmotic flows are mainly driven by the motion of ions, we also demonstrate the ion motions by using the numerical-visualization method.

Lifetime Prolongation of Poly (dimethylsiloxane) Surface Modification via 2-Hydroxyethyl Methacrylate Grafting for Electroosmotic Flow

  • Park, Eun-Soo;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.142-144
    • /
    • 2004
  • To use Poly-dimethylsiloxane (PDMS) for the electrokinetic flow channel, the PDMS surface must be modified to be hydrophilic. With $O_2$ plasma treatment, it is difficult to maintain hydrophilicity for more than one day. In this paper, we present the chemical modification of the PDMS surface using 2-Hydroxyethyl methacrylate (HEMA) to prolong hydrophilicity lifetime. The oxide radicals generated temporarily on the PDMS surface by $O_2$ plasma are grafted with HEMA. Once the PDMS samples have been grafted, they demonstrate improved hydrophilicity retainment and electroosmotic flow characteristics compared to the untreated PDMS and the oxidized PDMS following the $O_2$ plasma process. This phenomenon was verified by the contact angles, Fourier transform infrared (FTIR) spectra and electro osmotic flow rates observed for more than 300 hours.