• Title/Summary/Keyword: Electronic states

Search Result 864, Processing Time 0.03 seconds

Compartion of the Novel Sliding Mode Controller with Virtual State to Sliding Mode Controller with Co-states (가상의 상태를 이용한 새로운 슬라이딩 모드 제어기와 기존의 co-state 기반의 슬라이딩 모드제어기 비교.검토)

  • Park, Seung-Kyu;Ha, Young-Suk;Gwak, Gun-Pyeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2664-2666
    • /
    • 2000
  • In this paper, the novel sliding mode control method with virtual state is compared to the SMC with co-states. The former method is shown to have advantage in the respect of computation.

  • PDF

The Study on Characteristic of Phase Transition in differential Chalcogenide Thin Films ($Se_1Sb_2Te_2$ 칼코게나이드 박막의 두께에 따른 상변화 특성 연구)

  • Lee, Jae-Min;Yang, Sung-Jun;Shin, Kyung;Chung, Hong-Bay;Kim, Young-Hae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.340-343
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser hem: hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. This letters researched into the characteristic of phase change transition in differential Chalcogenide thin films materials. The electrode used Al and experimented on 100nm, 300nm, 500nm respectively.

  • PDF

Self-Recurrent Wavelet Neural Network Observer Based Sliding Mode Control for Nonlinear Systems (자기 회귀 웨이블릿 신경 회로망 관측기 기반 비선형 시스템의 슬라이딩 모드 제어)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2236-2238
    • /
    • 2004
  • This paper proposes the self-recurrent wavelet neural network (SRWNN) observer based sliding mode control (SMC) method for nonlinear systems. Unlike the classical SMC, we assume that all states of nonlinear systems are not measured and design the SRWNN observer to measure the states of nonlinear systems. The SRWNN in the observer is used for approximating the observer system's gain. To generate the control input for controlling the nonlinear system, the measured states are used. The sliding surface with a boundary layer is defined to remove the chattering of the control input. Simulation result to show the effectiveness of the SRWNN observer is presented.

  • PDF

Calculation of Electron Density and Electronic States in n-AlGaAs/GaAs Heterointerface (수치해석법에 의한 n-AlGaAs/GaAs 이종접합에서의 전자밀도와 전자 상태 계산)

  • Kho, Jae-Hong;Kim, Choong-won;Park, Seong-Ho;Han, Baik-Hyung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1202-1208
    • /
    • 1988
  • The electron density and electronic states in n- AlGaAs/GaAs heterointerface are calculated by using classical- and quantum-mechanics, respectively. We examine the effects of spacer layer thickness and doping concentration in AlGaAs layer on 2DEG density. Also, the dependences of electronic states of 2DEG upon temperature and acceptor concentration in GaAs layer are investigated.

  • PDF

Electrical property of polyvinylalcohol (Polyvinylalcohol의 전기적 특성)

  • 김현철;구할본
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.184-189
    • /
    • 1995
  • The electrical property of ultra thin PVA films(several hundreds .angs.-several .mu.m in thickness) formed by sphere bulb blowing technique, has been studied. The electrical conductivity of relatively thick films(>several thousands .angs.) has been very high and enhanced by the exposure either to high humidity of air or $NH_3$, which can be explained in terms of the role of ionic transport. The use of PVA films as NH$_{3}$ sensor is also proposed. In ultra thin PVA films less than 1500.angs., two conducting states ; high conducting and low conducting states, are observed. The nonlinear current-voltage characteristics in the low conducting state and the switching between these two states are also confirmed. These properties are discussed in terms of electronic conduction processes. The breakdown strength of the ultra thin PVA film is found to be very high(-30MV/cm), supporting the electron avalanche process in a thick polymer films.

  • PDF

Characteristics of the diffraction grating formation for SeGe (SeGe 재료의 회절 격자 형성 특성)

  • Park, Jeong-Il;Park, Jong-Hwa;Kim, Jin-Woo;Yeo, Cheol-Ho;Lee, Young-Jong;Chung, Hong-B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1445-1447
    • /
    • 2001
  • We have investigated about the grating formation of the $a-Se_{75}-Ge_{25}$ chalcogenide thin films. In this study, holographic gratings have been formed by using He-Ne laser(632.8nm) with different polarization states(linear, circular polarization). The diffraction efficiency was obtained by +1st order intensity of the diffracted beam. We have obtained maximum efficiency for Ag-doped thin film. It is observed the difference of the diffraction efficiency with polarization states. S:S-polarized state is shown high efficiency than the other polarization.

  • PDF

The physical properties and switching characteristics of amorphous $Ge_2Sb_2Te_5$ thin film (비정질 $Ge_2Sb_2Te_5$ 박막의 물리적 성질 및 스위칭 특성)

  • Lee, Jae-Min;Yang, Sung-Jun;Shin, Kyung;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.268-271
    • /
    • 2004
  • The phase transition from amorphous to crystalline states, and vice versa, of $Ge_2Sb_2Te_5$ films by applying electrical pulses have been studied. This material can be used as nonvolatile memory. The reversible phase transition between the amorphous and crystalline states, which is accompanied by a considerable change in electrical resistivity, is exploited as means to store bits of information. The nonvolatile memory cells are composed of a simple sandwich (metal/chalcogenide/metal). It was formed that the threshold voltage depends on thickness, electrode distance, annealing time and temperature, respectively.

  • PDF

The Study on the Characteristic of Phase Transition in Differential Thickness of Se1Sb2Se2 Thin Films

  • Lee Jae-Min;Yang Sung-Jun;Shin Kyung;Chung Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.241-243
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can be controlled by electrical or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. In this letter, the characteristics of phase transition in differential chalcogenide thin film are investigated. Al was used for the electrode as the thickness of 100, 300, 500 nm, respectively.

Electrical characteristic of differential ternary chalcogenide thin films (칼코게나이드 3원계 박막에서의 전기적 특성에 관한 연구)

  • Yang, Sung-Jun;Shin, Kyung;Lee, Jae-Min;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.377-380
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. GeSbTe(GST), AsSbTe(AST), SeSbTe(SST) used to phase change materials by appling electrical pulses. Thickness of ternary chalcogenide thin films have about 100nm. Upper and lower electrode were made of Al. It is compared with I-V characteristics after impress the variable pulses.

  • PDF

A First-principles Study on Magnetic and Electronic Properties of Ni Impurity in bcc Fe

  • Rahman, Gul;Kim, In-Gee
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.124-127
    • /
    • 2008
  • The magnetic and electronic properties of Ni impurity in bcc Fe ($Ni_1Fe_{26}$) are investigated using the full potential linearized augmented plane wave (FLAPW) method based the generalized gradient approximation (GGA). We found that the Ni impurity in bcc Fe increases both the lattice constant and the magnetic moment of bcc Fe. The calculated equilibrium lattice constant of $Ni_1Fe_{26}$ in the ferromagnetic state was 2.84 A, which is slightly larger than that of bcc Fe (2.83 ${\AA}$). The averaged magnetic moment per atom of $Ni_1Fe_{26}$ unit cell was calculated to be $2.24{\mu}_B$, which is greater than that of bcc Fe (2.17 ${\mu}_B$). The enhancement of magnetic moment of $Ni_1Fe_{26}$ is mainly contributed by the nearest neighbor Fe atom of Ni, i.e., Fe1, and this can be explained by the spin flip of Fe1 d states. The density of states shows that Ni impurity forms a virtual bound state (VBS), which is contributed by Ni $e_{g{\downarrow}}$ states. We suggest that the VBS caused by the Ni impurity is responsible for the spin flip of Fe1 d states.