• Title/Summary/Keyword: Electronic sound

Search Result 377, Processing Time 0.027 seconds

Study of Frequency Response Characteristics in Microphone Used by Optical Sensor

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in microphone using optical sensor, acousto-optic sensor system has been implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point has also been determined by measuring the response characteristics. The choosing the point, which has maximum linearity and sensitivity has changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement /analysis program, "Smaart Live" and "USBPre", which are based on PC, and compared the result from an existing capacitance microphone. The measured optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 4 kHz at up to 3 dB.

THEORY OF BACKGROUND NOISE CANCELLATION ON PREDICTION OF RESPONSE PROBABILITY DISTRIBUTION FOR AN ARBITRARY SOUND WALL SYSTEM AND ITS APPLICATION TO ACTUAL SOUND WALL SYSTEMS

  • Ohta, M.;Takaki, N.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.740-745
    • /
    • 1994
  • In the actual situation of measuring the environmental noise, it is very often that only the resultant phenomenon fluctuation contaminated by the additional noise of arbitrary distribution type can be observed. Furthermore, the observed data is usually given in a sound level form the purpose of estimating only the undisturbed objective output response, some estimation method is necessary to reasonably remove the effect of the above additional noise. In this paper, first, a mathematical model of arbitrary sound insulation systems is introduced in the form of a linear system on intensity scale, by using the well-known additive property of energy quantities. Next, some estimation method of the output response under the existence of background noise is derived. Then, based on the expression of the above estimation method, a new prediction method of only the output response probability function form for arbitrary sound insulation systems without. a background noise is proposed by use of observed data contaminated by a background noise. Finally, the effectiveness of the proposed method is confirmed experimentally too by applying it to the actual various type sound wall systems.

  • PDF

Electronic Music Glove using Sound Card

  • Lee, Changwon;Kim, Kyunyon;Uipil Chong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.306-309
    • /
    • 2000
  • We developed an electronic music glove (EMG) system that could play musical scores in real time processing. The EMG system interfaces with the signal coming from the controller to the sound card in the computer. The computer, according to the status of the finger and foot switches, generates the signals to the speaker systems using the application C++ program by making use of MIDI message. The EMG systems can control up to several octave notes and duration of sound, and several musical performance expressions such as chorus, reverberation, rhythm, and volume. Finally, our EMG could play the performance of simple music depending on the choice of any kind of musical instruments in the sound card in computer systems.

  • PDF

Development of Signal Monitoring Platform for Sound Source Localization System

  • Myagmar, Enkhzaya;Kwon, Soon Ryang;Lee, Dong Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.961-963
    • /
    • 2012
  • The sound source localization system is used to some area such as robotic system, object localization system, guarding system and medicine. So time delay estimation and angle estimation of sound direction are studied until now. These days time delay estimation is described in LabVIEW which is used to create innovative computer-based product and deploy measurement and control systems. In this paper, the development of signal monitoring platform is presented for sound source localization. This platform is designed in virtual instrument program and implemented in two stages. In first stage, data acquisition system is proposed and designed to analyze time delay estimation using cross correlation. In second stage, data obtaining system which is applied and designed to monitor analog signal processing is proposed.

A Study on the Propagation Characteristics of Fire Alarm Sound in Buildings (화재비상경보음의 건물 내 전달특성에 관한 연구)

  • Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.153-160
    • /
    • 2009
  • This study aims to review the propagation characteristics of fire alarm sound in building through computer simulation. In order to achieve this goal, the sound power level of existing three different emergency alarms were measured in an anechoic chamber. Sound power level of alarm bell was 98.6dB and electronic-siren speaker was 95.7dB, and electronic-siren phon was 101.8dB at the voltage of DC 24V in the condition of anechoic chamber. As the results of acoustic simulation, it was shown that sound levels at the corridor of the building were relatively high and even. But, there were large difference in sound level at all the frequency bands between corridor and lecture rooms. This mean that alarm sound couldn't be recognized sometimes in lecture rooms. Through the computer simulation, the propagation characteristics of fire alarm sound could be forecasted and compared due to plans of buildings.

Development of Wireless Electronic Cardiogram and Stethoscope (ECGS) to Measure ECG Signal and Heart Sound (심전도와 심음을 측정하기 위한 무선 전자 심전도-심음 청진기 개발)

  • Cho, Han Seok;Kang, Young-Hwan;Park, Jae-Soon;Choi, Jin Gyu;Joung, Yeun-Ho;Koo, Chiwan
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.124-130
    • /
    • 2022
  • In this paper, we proposed a portable electronic cardiogram and stethoscope (ECGS) that can simultaneously perform the electrocardiogram (ECG) and auscultation tests to increase the reliability of diagnosis of heart disease. To measure the ECG and heart sound (HS) at the same time, three ECG electrodes and a microphone sensor were combined into a triangular shape with a width of 90 mm and a height of 97 mm that can be held in one hand. In order to prevent skin problems when they contact the patient's skin, a capacitive coupled electrode was selected as the ECG electrode and a silicone material was used in a chest piece with the microphone sensor. For the signals measured from the electrodes and the chest piece, filters were respectively configured to pass only the signals of 0.01-100 Hz and 20-250 Hz, which are frequency bands for ECG and HS. The filtered ECG and HS analog signals were converted into digital signals and transmitted to a PC using wireless communication for monitoring them. The HS could be auscultated simultaneously using an earphone. The monitored ECG had an SNR of about 34 dB and a P-QRS-T waveform is clearly visible. In addition, the HS had an SNR of about 28 dB and both S1 and S2 are clearly visible. It is expected that it can aid doctors' inexperience in analyzing the ECG and HS.

The effects of a temporal masking on the sound laterlization (시간 마스킹이 음상정위에 미치는 영향)

  • Lee, Chai-Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.352-356
    • /
    • 2010
  • In this study, it is discussed how the directional property of the sound lateralization is influenced by proceeding or succeeding tone. The acoustic source applied here is a reference sound which has 0.5 msec interaural time difference(ITD). Based on this reference sound, interfering sounds with five levels of magnitude are applied to the subjects with four kinds of inter-stimuli time intervals(ISI). The interfering sounds are also added as two different types, proceeding tone and succeeding tone. Additionally, in order to investigate a frequency influence, the reference sound and the interfering sounds are generated by using 2kHz, 4 kHz and a white noise. As a result, the influence on lateralization by proceeding tone is lager than that by succeeding tone. It can consider this result as the effect of temporal masking on lateralization. Moreover, there are small differences of masking effect on lateralization by combinations of pure tone. This result shows that the dependency of frequency domain between reference sound and interfering sound is small on the sound lateralization.

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.

Music Programming Language Composition Using Csound (Csound를 이용한 음악 프로그래밍 언어 제작)

  • Yeo Young-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.365-370
    • /
    • 2005
  • The present study is purposed to establish a systematic theory for user-friendly approach to the creation of using a programming language using Csound. Csound is a world-wide computer music programming language and a software synthesizer specialized for prominent sound designers developed by Barry Vercoe at the Media Laboratory in M.I.T. The introduction and the main body of this paper suggested as the starting point of creating electronic music and musical sound the time of combination of music with natural sound or sound from specific media from the viewpoint of traditional Western music. and presents a systematic method composed of the principle of the operation of Csound and basic data samples.

The effect of leading tone and following tone with single frequency on sound lateralization (단일 주파수에서 선행음 및 후속음이 음원의 방향지각에 미치는 영향)

  • Lee, Chai-Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.251-255
    • /
    • 2010
  • In this study, the effects leading and following tone with single frequency on sound lateralization were investigated. The tone with level difference and ISI(Inter Stimuli Interval) were used. The width of test tone was 2ms, leading tone and following tone were 10ms and 1kHz was used. The arrived time difference of subject's ears 0.5ms. We set four levels on each ISI and let them decide whether they hear the provided sound from left or right. As a result, it knew the fact that leading tone had more effect on sound lateralization than following tone.