• Title/Summary/Keyword: Electronic property

Search Result 1,571, Processing Time 0.033 seconds

Fabric Mapping and Placement of Field Programmable Stateful Logic Array (Field Programmable Stateful Logic Array 패브릭 매핑 및 배치)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, the Field Programmable Stateful Logic Array (FPSLA) was proposed as one of the most promising system integration technologies which will extend the life of the Moore's law. This work is the first proposal of the FPSLA design automation flow, and the approaches to logic synthesis, synchronization, physical mapping, and automatic placement of the FPSLA designs. The synchronization at each gate for pipelining determines the x-coordinates of cells, and reduces the placement to 1-dimensional problems. The objective function and its gradients for the non-linear optimization of the net length and placement density have been remodeled for the reduced global placement problem. Also, a recursive algorithm has been proposed to legalize the placement by relaxing the density overflow of bipartite bin groups in a top-down hierarchical fashion. The proposed model and algorithm are implemented, and validated by applying them to the ACM/SIGDA benchmark designs. The output state of a gate in an FPSLA needs to be duplicated so that each fanout gate can be connected to a dedicated copy. This property has been taken into account by merging the duplicated nets into a hyperedge, and then, splitting the hyperedge into edges as the optimization progresses. This yields additional 18.4% of the cell count reduction in the most dense logic stage. The practicality of the FPSLA can be further enhanced primarily by incorporating into the logic synthesis the constraint to avoid the concentrated fains of gates on some logic stages. In addition, an efficient algorithm needs to be devised for the routing problem which is based on a complicated graph. The graph models the nanowire crossbar which is trimmed to be embedded into the FPSLA fabric, and therefore, asymmetric. These CAD tools can be used to evaluate the fabric efficiency during the architecture enhancement as well as automate the design.

Analyses on the Physical and Electrochemical Properties of Al2O3 Coated LiCoO2 (리튬이차전지용 양극 활물질(LiCoC2)의 표면처리의 특성 분석 및 전기화학적 특성 고찰)

  • Chang, Youn-Han;Choi, Sei-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.184-189
    • /
    • 2007
  • The importance of secondary battery industry is getting excited according to the development of battery industry as a high efficiency energy supplier of electronic machine of mobile information such as mobile phone, lap-top computer, PDA. It is rasing the interest about security of safety and high efficiency of cathode material for main part of secondary lithium battery. The cathode material which has been used like $LiCoO_2,\;LiMn_2O_4,\;LiNi_xCo_yMn_zO_2,\;LiNi_xCo_yM_zO_2$ (M=Al, Zr, Mg etc.,) the most typical material is $LiCoO_2$. But it is studying the development of substitute such as efficiency amelioration of $LiCoO_2$, thetiary element, olivine element because of the capacity of $LiCoO_2$, the matter of security; especially the betterment of efficiency, security research of safety has been actively processed in domestic and overseas about surface coating treatment of active cathode which is using oxide ($M_xO_3$). This study analyses side effect of battery according to increase of surface treatment, formation of precipitation for reagent condensation, non-reagent residue of oxide ($M_xO_3$) which is remains during the surface treatment of $LiCoO_2$; conducts study of new process, the consideration of the electrochemical property to improve oxide solution of mixing rate, mixture of surface treatment, dryness, calcinations conditionetc.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Input and Output Characteristics of Input Current Controlled Inverter Arc Welding Machine with High Efficiency (입력전류 제어형 고효율 인버터아크용접시스템의 입력 및 출력 특성연구)

  • 최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.358-369
    • /
    • 2000
  • Shielded metal arc welding machines with AC transformer have been widely used for thin-plate welding applications. Because of being bulky, heavy and of tap-changing property, so the SMAW's are changing to new power electronic circuits such as inverter circuit in order to reduce the system size and also to improve the welding performances at input output sides. The PWM inverter arc welding machine with diode rectifier has better output welding performances but it is has the plentiful harmonics and the lower input power factor. To solve these problems, input current-controlled scheme is considered for PWM inverter arc welding system, and then total input power factor is maintained to be more than 99%. Also a new combined control is proposed which can control both instantaeous welding output voltage and current under constant power condition, and as a result the variations of instantaneous current and voltage can be reduced to very narrow range in the V-I curve relationship, and hence the variance of welding current and voltage become so reduced. In addition the spatter generated during welding process is greatly reduced up to 70%. And the overall effiency can be improved up to 10%, which becomes higher when the load is lower.

  • PDF

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

Preparations of SPE Electrocatalysts Modified with Polypyrrole and Its Application for PEMFC (폴리피롤로 개질된 SPE 전극촉매의 제조 및 PEMFC로의 응용)

  • Kim, Jung-Hoon;Oh, Seung-Duck;Kim, Han-Sung;Park, Jong-Ho;Han, Jung-Woo;Lee, Kang Taek;Joe, Yung-Il
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.118-124
    • /
    • 2005
  • In this study, a novel deposition method of Pt catalysts onto Nafion membranes modified with polypyrrole (PPy) has been proposed for PEMFC application. The PPy/Nafion composite membranes were fabricated by chemical polymerization of pyrrole using $FeCl_3$ and $Na_2S_2O_8$ as initiator. The proton conductivity and water uptake of the chemically prepared PPy/Nafion composites were investigated. The ionic conductivity and water uptake of PPy/Nafion composite membrane prepared with $Na_2S_2O_8$ were decreased with polymerization time of pyrrole. In the case of $FeCl_3$, the ionic conductivity was almost retained and the water uptake was decreased with polymerization time of pyrrole. When the Pt particle was deposited on PPy/Nafion composites membrane by chemical reduction of $H_2PtCl_6$, the Pt loading on Nafion membrane was enhanced by polypyrrole due to electronic conduction property. The performance evaluation with membrane electrode assembly composed of Pt/PPy/Nafion composite and diffusion electrode was carried out using a single cell. As a result of fuel cell test, current density of $569mA/cm^2$ at 0.3 V has been obtained for MEA contained with Pt/PPy/Nafion composite. This study shows that direct deposition of Pt catalysts on Nafion impregnated polypyrrole is a promising method to prepare thin catalyst layer for the PEMFC.

Soft Magnetic Properties of CoFeHfO Thin Films (CoFeHfO 박막의 자기적 특성)

  • Lee, K.E.;Tho, L.V.;Kim, S.H.;Kim, C.G.;Kim, C.O.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.197-200
    • /
    • 2006
  • Amorphous alloys of Co-rich magnetic amorphous films are well known as thpical soft magnetic alloys. They are used for many kinds of electric and electronic parts such as magnetic recording heads, transformers and inductors. CoFeHfO thin films were prepared by RF magnetron reactive sputtering. The films were deposited onto Si(100) substrates with a power of 300 W at room temperature. The reactive gas was introduced up to 10% ($O_2$/(Ar + $O_2$)) during deposition, and the $Co_{39}Fe_{34}Hf_{9.5}O_{17.5}$ thin film exhibit excellent soft magnetic properties : saturation magnetization ($4{\pi}M_s$) of 19kG, magnetic coercivity ($H_c$) of 0.37 Oe, anisotropy field ($H_k$) of 48.62 Oe, and an electrical property is also shown to be as high as 300 ${\mu}{\Omega}cm$. It is assumed that the good soft magnetic properties of $Co_{39}Fe_{34}Hf_{9.5}O_{17.5}$ thin film results from high electrical resistivity and large anisotropy field.

A study on the problems in appling CIF, Incoterms 1990 into the contract of sale. (1990년(年) 인코텀즈에 따른 CIF조건(條件)의 활용상(活用上)의 문제점(問題點))

  • Choi, Myung-Kook
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.6
    • /
    • pp.11-51
    • /
    • 1993
  • This study is focused on the problems and the suggestions of proper ideas for solving them which are arisen from appling CIF, Incoterms 1990 into the contract of sale after reviewing of the contents of traditional CIF contract and the main changes of CIF, Incoterms 1990. This study summerized as follows: First, when the seller provide the buyer with non-negotiable sea waybill or inland waterway document instead of negotiable bill of lading, it is my feeling that the essence of symbolic delivery in traditional CIF contract is fading. And if the buyer has paid for the goods in advance, or a bank wishes to use the goods as security for a loan extended to the buyer, it is not sufficient that the buyer or the bank be named as consignee in a non-negotiable document. This is true because the seller by new instractions to the carrier could replace the named consignee with someone else. To protect the buyer or the bank it is therefore necessary that the original instructions from the seller to the carrier to deliver the goods to the named consignee be irrevocable. Second, CIF term can only be used for sea and inland waterway transport. When the ship's rail serves no practical purposes such as in the case of roll-on/roll-off or container traffic, CIP term instead of CIF term is more appropriate to use. Third, the EDI method still contains many legal and technical problems to be solved in order to be used thoroughly' in the international sale of goods. Therefore, the parties wishing to replace the traditional paper-based trade documents by electronic messages must exchange the agreement on EDI each other in order to prevent and sol ye unexpected problems. Forth, it may be that the goods are to be carried in bulk without such marking or naming of consignee as would amount to appropriation. Then the risk will not pass until effective appropriation has been made. Therefore, the seller needs to appropriate by issuing of separate bills of lading or delivery orders for parts of the bulk cargo. And in case the goods are bought while they are carried at sea, some problems on the passing of risk would arise. One possibility is that the buyer might have to assume risks which have already occured at the time when the contract of sale is entered into force. The other possibility would be to let the pissing of the risk concide with the time when the contract of sale is concluded. The parties are advised to ascertain the applicable law and any solution which might follow there form. Finally, Incoterms are restricted to deal with the main principles for the division of functions, costs and risks between the parties and the rest is left to their individual contract as supplemented by the custom of the trade, the individual terms of the contract of sale and the applicable law. Thus, the parties are advised to ascertain the applicable law on their individual contract of sale in order to solve the problems on the transfer of property, the remedy and so on.

  • PDF

Practical Usage of Low-Temperature Metal Catalyst for the Destruction of Volatile Organic Compounds (VOCs) (휘발성 유기화합물(VOCs) 제거를 위한 저온금속촉매 실용화에 관한 연구)

  • Jung, Sung-Chul;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.397-405
    • /
    • 2012
  • In this study, performance evaluation of newly developed technology for the economical and safe removal of volatile organic compounds (VOCs) coming out from electronic devices washing operation and offensive odor induction materials was made. Metal oxidization catalyst has shown 50% of removal efficiency at the temperature of $220^{\circ}C$. Composite metal oxidization catalyst applied in this study has shown that the actual catalysis has started at the temperature of $100^{\circ}C$. Comprehensive analysis on the catalyst property using Mn-Cu metal oxidization catalyst in the pilot-scale unit was made and the removal efficiency was variable with temperature and space velocity. Full-scale unit developed based on the pilot-scale unit operation has shown 95% of removal efficiency at the temperature of $160^{\circ}C$. Optimum elimination effective rates for the space velocity was found to be $6,000hr^{-1}$. The most appropriate processing treatment range for the inflow concentration of VOCs was between 200 ppm to 4,000 ppm. Catalyst control temperature showed high destruction efficiency at $150{\sim}200^{\circ}C$ degrees Celsius in 90~99%. External heat source was not necessary due to the self-heat reaction incase of VOCs inflow concentration is more than 1,000 ppm. Equipment and fuel costs compared to the conventional RTO/RCO method can be reduced by 50% and 75% respectively. And it was checked when there was poisoning for sulfide and acid gas.