• Title/Summary/Keyword: Electronic parking brake

Search Result 12, Processing Time 0.03 seconds

Design of Electronic Parking Brake Control Simulator for Emergency Vehicle Braking (차량 비상제동을 위한 전자식 주차 브레이크 제어 시뮬레이터 설계)

  • Park, Jaeeun;Im, Changhyon;Kim, Taesung;Kim, Youngkeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, a simulator hardware and control design for an electronic parking brake (EPB) are proposed for emergency vehicle braking when the hydraulic break and anti-lock brake systems (ABS) fail to function. EPB systems are designed specifically for park braking and are usually installed on the rear wheels. However, in an emergency situation when all vehicle brake systems fail, the EPB can be utilized to stop the vehicle and track the target slip ratio as the ABS. This paper analyzed the non-linear EBP of the type of motor on caliper (MoC) based on experiments. A simulator hardware is also designed to validate the performance of the designed EPB controller in terms of braking distance and performance in tracking the target slip ratio. Through the experimental analysis, it is confirmed that a sliding mode controller can be applied on a non-linear EPB to track the target slip ratio.

Performance Analysis of Electronic Parking Brake (전자 제어식 주차브레이크(EPB)의 성능분석)

  • Kim, Sung-Mo;Jeong, Jong-Yeol;Shin, Chang-Woo;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.751-755
    • /
    • 2011
  • Electric Parking Brake(EPB) is the system operated by electric control actuator. It differs from the mechanical parking brake system which is operated by lever and pedal in need of human power. The EPB system is composed of DC motor, helical and differential epicyclic gear, screw, cables, and sensor. This paper describes about the EPB system mathematically and constructs a modeling of the EPB system using MATLAB/SIMULINK. Especially, SimMechanics library in SIMULINK is used to make each parts of system a module. By made modeling of the friction torque between bolt and nut. Cable tension can be maintained after the motor operating stops.

Fuzzy Model-Based Fault Detection Method of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 퍼지모델 기반 고장검출 방법)

  • Moon, Byoung-Joon;Kim, Dong-Han;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1009-1013
    • /
    • 2009
  • In this paper, a robust fault detection method for varying temperature based on fuzzy model is proposed. To develop a robust force estimation model, it needs temperature information because the output of force sensor is affected by a temperature variation. The nonlinear dynamic system, such as the parking force of the EPB (Electronic Parking Brake) system is necessary to have a higher order equation model. But, because of the calculation time, the higher order equation model is hard to be used in real application. In case of the lower order equation model, the result is not as accurate as acceptable. To solve this problem, the robust fuzzy model-based fault detection is developed. A proposed fault detection method for varying temperature is verified by HILS (hardware in the loop simulation).

Design of Scheduling on AUTOSAR OS With Shared Resource (AUTOSAR 기반 공유자원이용 스케줄링 구조)

  • Choi, Junyeol;Cho, Joonhyung;Choi, Yunja
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.279-288
    • /
    • 2018
  • As a result of the technological advances in the E / E system, automotive system can provide advanced functions for safety and comfort. In addition, mechanical systems is changed to the electronic system. And the systems perform cooperative functions through communication. So the E / E system becomes more complicated as the size of the system increases. In order to secure the safety of complicated E / E system, ISO26262 standard require that Freedom from Interference and Sufficient Independence be met. In this paper, we propose a software scheduling method that can guarantee the independence between decomposed components after software decomposition and software development of ASIL D level EPB (Electronic Parking Brake) system.

A Study on the Implementation of Automatic parking brake system using In-Vehicle network (차량 네트워크를 이용한 자동 주차브레이크 시스템 구현)

  • 문용선;문창현;이명복;정철호;최형윤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.733-739
    • /
    • 2004
  • As per the recent technology related to safety of vehicles, Active safety system is being developed in combination withthe technology of electronic system. For example, ABC(Active Body Control), ABS(Antilock Brake System), ACC(Adaptive Cruise Control) are representative of this system. This technology is based on an electronic system, and shares a lot of data through network-system invehicles. Therefore, the control-algorism and the practicable application are realized in this research in order that CAN, network system for vehicles can run the brake device, which is composed mechanically and hand-operated. Additionally the possibility is confirmed that this control-system can be compatible with the existing electronic system in vehicles.

Study on Cold Forward Extrusion Formality Analysis along with Tool Entrance Angle of Helical Gear for Electronic Parking Brake Using Finite Element Analysis (유한요소해석을 이용한 전자식 주차브레이크용 헬리컬 기어의 금형 도입부 각도에 따른 냉간 전방압출 성형성 분석에 관한 연구)

  • Kim, Byeong Kil;Lee, Hyun Goo;Cho, Jae Ung;Jeong, Kwang Young;Cheon, Seong Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.977-982
    • /
    • 2015
  • This study uses finite element analysis to evaluate the forming load of tool entrance angle of the cold forward extrusion molding process of helical gear; this can replace the spur gear applied to the Electronic Parking Brake (EPB) system. A cold forging process is often used in the automobile industry as well as in various industrial machines due to its high efficiency. Finite element analysis is frequently used when interpreting results of the forging process. Formality was evaluated by calculating tooth profile filling rate of helical gear. Change in required forming load was investigated when the entrance angle of forward extrusion tool die was changed from $30^{\circ}$ to $60^{\circ}$, also by finite element analysis. We suggest suitable tool entrance angles.

Multi-stage Cold Forging Process Design and Backward Extrusion Characteristics Evaluation of Serration Gear for Electronic Parking Brake (전자식 파킹 브레이크용 세레이션 기어의 냉간다단단조 공정 설계 및 후방 압출특성에 관한 평가)

  • Seo, Ju-Han;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2022
  • Reducing production costs through net-shaped cold forging is an important aspect in the automobile industry. In this study, we intend to produce a net-shaped electronic parking brake (EPB) serration gear for automobiles, using multi-stage cold forging. These serrations are then assembled to the reduction gear of an EPB actuator. The forging process of the serrations and the cold forging design were verified through finite element analysis (FEA) in order to evaluate metal flow. The forging machine was selected by checking the load using FEA. Based on the FEA results, molds were designed, and parts were made using multi-stage cold forging to produce a net-shaped serration gear.

A Study on an Omni-directional Mobile Robot for Moving a Double-parked Car (이중 주차된 차량 이동용 전방향 이동 로봇에 대한 연구)

  • Yoon, Kyung Su;Lee, Myung Sub;Sung, Yount Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.440-447
    • /
    • 2018
  • Double parking is very common in a parking lot where there is not sufficient parking space. When we double-park a car, we leave transmission gear in neutral position and release the emergency brake so that the double-parked car can be moved just by pushing it. However, moving a double-parked car by pushing is very hard and dangerous especially for the old and the weak. So, we propose an omni-directional mobile robot for moving a double-parked car easily and safely. The developed omni-directional mobile robot moves a double-parked car by rotating a wheel of a double-parked car. It has two specially designed rollers to rotate a wheel of a double-parked car and is designed so that the height of the robot is very low to be able to enter beneath a double-parked car. It can move a double-parked car safely by detecting obstacles in the way with five ultrasonic sensors. We verified by several experiments that the developed omni-directional mobile robot can be used to move a double-parked car easily and safely.

Using Model Checking to Verify an Automotive Electric Parking Brake System (자동차 전자식 주차 브레이크 시스템 안전 요구사항 검증을 위한 모델검증 적용)

  • Choi, Jun Yeol;Cho, Joon Hyung;Choi, Yun Ja
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.167-176
    • /
    • 2017
  • There are increasing policies and safeguards to prevent various human resource losses with the development of automotive industry. Currently ISO26262 $1^{st}$ edition has been released in 2011 to ensure functional safety of electrical and electronic systems and the $2^{nd}$ edition will be released in the second half of 2016 as part of a trend. The E/E (Electrical & Electronics) system requirements verification is required through walk-through, 인스펙션, semi-formal verification and formal verification in ISO 26262. This paper describe the efficiency of model checking for the E/E system requirements verification by applying the product development project of ASIL (Automotive Safety Integrity Level) D for the electrical parking brake system.