• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.038 seconds

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

Performance Analysis of TPMS Beamformer According to Variance of Antenna Interelement Spacing (안테나 간격 변화에 대한 TPMS 빔형성기 성능분석)

  • Choi, Byung-Sang;Kim, Seong-Min;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.907-915
    • /
    • 2013
  • Tire Pressure Monitoring System (TPMS) is an auxiliary safety system for recognizing the condition of tires based on the pressure and temperature data transmitted from the sensor unit installed on a tire of the vehicle. Using TPMS, a driver can frequently check the state of tires and it aids to maintain the optimum running condition of the vehicle. Since TPMS must utilize the wireless communication technique to transmit data from a sensor unit to a signal processing unit installed in the vehicle, it suffers from interference signals caused by various external electrical or electronic devices. In order to suppress high-power interference signals, we employ beamforming techniques based on the uniform linear antenna array. As the number of the antennas is increased, the performance of the interference suppression is improved. However, there is the limit of the number of antennas, installed in the center of a vehicle, because of its size. In this paper, we compare and analyze the performance of the beamformer, when reducing the interelement spacing of antennas, to increase the number of the receiving antennas. For the performance analysis of the beamformers, we consider the switching beamformer and minimum-variance distortionless-response (MVDR) beamformer for TPMS, recently proposed.

Ferroelectric and Magnetic Properties of Dy and Co Co-Doped $BiFeO_3 $ Ceramics

  • Yu, Yeong-Jun;Park, Jeong-Su;Lee, Ju-Yeol;Gang, Ji-Hun;Lee, Gwang-Hun;Lee, Bo-Hwa;Kim, Gi-Won;Lee, Yeong-Baek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.260-260
    • /
    • 2013
  • Multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and technological applications in magnetic/ferroelectric data-storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3 $ is a typical multiferroic material with a room temperature magnetoelectric coupling in view of high magnetic-and ferroelectric-ordering temperatures (Neel temperature $T_N$~647 K and Curie temperature $T_C$~1,103 K). Rare-earth ion substitution at the Bi sties is very interesting, which induces suppressed volatility of Bi ion and improved ferroelectric properties. At the same time, Fe-site substitution with magnetic ions is also attracting, and the enhanced ferromagnetism was reported. In this study, $Bi_{1-x}Dy_xFe_{0.95}Co_{0.05}O_3$ (x=0, 0.05 and 0.1) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Dy_2O_3$, $Fe_2O_3$ and $Co_3O_4$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ or 24 h to produce $Bi_{1-x}Dy_xFe_{0.95}Co_{0.05}O_3$. The samples were immediately put into an oven, which was heated up to $800^{\circ}C$ nd sintered in air for 30 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The electric polarization was measured at room temperature by using a standard ferroelectric tester (RT66B, Radiant Technologies).

  • PDF

A Top-Down Approach to the Hardware Design Education Focusing on the Logic Design Courses (하드웨어 설계 교육에서의 TOP-DOWN 접근방법 : 논리설계 과목을 중심으로)

  • Yi Kang;Jung Kyeong-Hoon;Han Youn-Sik
    • Journal of Engineering Education Research
    • /
    • v.6 no.2
    • /
    • pp.22-29
    • /
    • 2003
  • The ultimate goal of a hardware design course is to equip the students with the system design ability. However, the majority of the current structures of the design courses are focused on the understanding of the operational principles of each device which is used later as a building block for the design of a system. The shortcomings of this approach are, first, that it is very hard to keep the students motivated to the end of the course where system design concepts are dealt, and, second, the students do not have enough experience of the system design which is usually required in the field. As an alternative to solve these problems, it is necessary to reverse the order of contents of the course. Namely we introduce the high level of the abstract concept of the system design in the very beginning of the course and later by lowering the level of abstraction to the operational principle of the internal devices. In this paper, we propose a new top-down methodology for the introductory hardware design course of logic design, where the design expression and verification in the system-level are introduced first and then detail knowledge on each device is introduced later. Also, we report a case result from a student's working group as part of an extracurricular education in order to verify the validity of our proposed approach

A Study on the Design of Digital Frequency Discriminator with 3-Channel Delay Lines (3채널 지연선을 가진 디지털주파수판별기의 설계에 관한 연구)

  • Kim, Seung-Woo;Choi, Jae-In;Chin, Hui-cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.44-52
    • /
    • 2017
  • In this paper, we propose a DFD (Digital Frequency Discriminator) design that has better frequency discrimination and a smaller size. Electronic warfare equipment can analyze different types of radar signal such as those based on Frequency, Pulse Width, Time Of Arrival, Pulse Amplitude, Angle Of Arrival and Modulation On Pulse. In order for electronic warfare equipment to analyze radar signals with a narrow pulse width (less than 100ns), they need to have a special receiver structure called IFM (Instantaneous Frequency Measurement). The DFD (Digital Frequency Discriminator) is usually used for the IFM. Because the existing DFDs are composed of separate circuit devices, they are bulky, heavy, and expensive. To remedy these shortcomings, we use a three delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$) in the DFD, instead of the four delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$, $64{\lambda}$) generally used in the existing DFDs, and apply the microwave integrated circuit method. To enhance the frequency discrimination, we detect the pulse amplitude and perform temperature correction. The proposed DFD has a frequency discrimination error of less than 1.5MHz, affording it better performance than imported DFDs.

The Study on Centralization & Electronic for Maintenance Efficiency of Ground Signaling System (지상신호설비의 유지보수 효율화를 위한 집중화 및 전자화 연구)

  • Baek, Jong-Hyen;Kim, Yong-Kyu;Lee, Kang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2983-2988
    • /
    • 2010
  • The train control system used in Gyeongbu-line is classified in ATC, IXL and CTC. Domestic railway signaling systems are being developed by electrification. In these systems the electrification of interlocking reaches 57% and the safety equipments of railway crossings in trackside devices have completed their development into an integrated system. Block systems of all the existing sections have not yet electrified and integrated so that they need a number of complement in terms of construction and maintenance. For ABS currently used in existing domestic lines, and LEU being installed in Gyeongbu and Honam lines, although a train is controlled by the signaling information of the same train in the same location, the system is separately installed so that the same information is separately divided and transmitted at the each distinct system. Therefore, in the conventional ABS and LEU, there are a lot of duplicate installed compartments such as lamp detection and a power supply unit. Hence, we have a lot of problems: for maintenance, a lot of manpower and costs need to be invested and the overall manufacturing costs get higher, as well as the construction costs by duplicate. Therefore, this paper suggest design to develop an integrated electronic Block Control Unit by the integration of the currently used ABS, and communication and electronic technology. We are to monitor and manage the block systems in the corresponding station by integrating. And we are to transmit information together with LEU, which is an ATS wayside transmitter.

Design and Implementation of Linear Gain Equalizer for Microwave band (초고주파용 선형 이득 등화기 설계 및 제작)

  • Kim, Kyoo-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.635-639
    • /
    • 2016
  • In the devices used in the microwave frequency band, the gain decreases as the frequency increases due to the parasitic component. To compensate for these characteristics, a linear gain equalizer with an opposite slope is needed in wideband systems, such as those used for electronic warfare. In this study, a linear gain equalizer that can be used in the 18 ~ 40GHz band is designed and fabricated. Circuit design and momentum design (optimizations) were carried out to reduce the errors between design and manufacturing. A thin film process is used to minimize the parasitic components within the implementation frequency band. A sheet resistance of 100 ohm/square was employed to minimize the wavelength variation due to the length of the thin film resistor. This linear gain equalizer is a structure that combines a quarter wavelength-resonator on a series microstrip line with a resistor. All three 1/4 wavelength short resonators were used. The fabricated linear gain equalizer has a loss of more than -5dB at 40GHz and a 6dB slope in the 18 ~ 40GHz band. By using the manufactured gain equalizer in a multi-stage connected device such as an electronic warfare receiver, the gain flatness degradation with increasing frequency can be reduced.

Reflow Behavior and Board Level BGA Solder Joint Properties of Epoxy Curable No-clean SAC305 Solder Paste (에폭시 경화형 무세정 SAC305 솔더 페이스트의 리플로우 공정성과 보드레벨 BGA 솔더 접합부 특성)

  • Choi, Han;Lee, So-Jeong;Ko, Yong-Ho;Bang, Jung-Hwan;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • With difficulties during the cleaning of reflow flux residues due to the decrease of the part size and interconnection pitch in the advanced electronic devices, the need for the no-clean solder paste is increasing. In this study, an epoxy curable solder paste was made with SAC305 solder powder and the curable flux of which the main ingredient is epoxy resin and its reflow solderability, flux residue corrosivity and solder joint mechanical properties was investigated with comparison to the commercial rosin type solder paste. The fillet shape of the cured product around the reflowed solder joint revealed that the curing reaction occurred following the fluxing reaction and solder joint formation. The copper plate solderability test result also revealed that the wettability of the epoxy curable solder paste was comparable to those of the commercial rosin type solder pastes. In the highly accelerated temperature and humidity test, the cured product residue of the curable solder paste showed no corrosion of copper plate. From FT-IR analysis, it was considered to be resulted from the formation of tight bond through epoxy curing reaction. Ball shear, ball pull and die shear tests revealed that the adhesive bonding was formed with the solder surface and the increase of die shear strength of about 15~40% was achieved. It was considered that the epoxy curable solder paste could contribute to the improvement of the package reliability as well as the removal of the flux residue cleaning process.