• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.032 seconds

Electronic structure of potassium-doped copper phthalocyanine studied by photoemission spectroscopy and density functional calculations

  • Im, Yeong-Ji;Kim, Jong-Hun;Ji, Dong-Hyeon;Jo, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.142.2-142.2
    • /
    • 2016
  • The metal intercalation to an organic semiconductor is of importance since the charge transfer between a metal and an organic semiconductor can induce the highly enhanced conductivity for achieving efficient organic electronic devices. In this regard, the changes of the electronic structure of copper phthalocyanine (CuPc) caused by the intercalation of potassium are studied by ultraviolet photoemission spectroscopy (UPS) and density functional theory (DFT) calculations. Potassium intercalation leads to the appearance of an intercalation-induced peak between the highest molecular occupied orbital (HOMO) and the lowest molecular unoccupied orbital (LUMO) in the valence-band spectra obtained using UPS. The DFT calculations show that the new gap state is attributed to filling the LUMO+1, unlike a common belief of filling the LUMO. However, the LUMO+1 is not conductive because the ${\pi}$-conjugated macrocyclic isoindole rings on the molecule do not make a contribution to the LUMO+1. This is the origin of a metal-insulator transition through heavily potassium doped CuPc.

  • PDF

Fabrication and Electrical Properties of MIM Devices In Self-assembled Organic Thin Film (자기조립 유기박막의 제작과 MIM소자의 전기적 특성)

  • Son, Jung-Ho;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.24-26
    • /
    • 2002
  • In this paper, we discuss the electrical properties of self-assembled (2'-amino-4,4-di(ethynylphenyl)-5'-nitro-l-(thioacetyl)benzene), which has been well known as a conducting molecule having possible application to molecular level NDR device. The phenomenon of negative differential resistance (NDR) is characterized by decreasing current through a junction at increasing voltage. also fabrication of MIM-type molecular electronic and the Molecular Level Using Scanning Tunneling Microscopy

  • PDF

State Feedback Control of PWM Current Source Converter and Inverter System (PWM 전류형 컨버터 및 인버터 시스템의 상태궤환 제어)

  • Ko, Sung-Beom;Lee, Dong-Choon;Ro, Chae-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.501-503
    • /
    • 1996
  • In this paper, a novel control strategy for PWM current source converter and inverter is proposed, applying a multivariable state feedback control. The PWM converter controls line current to be sinusoidal and make input power factor unity. In addition, the modulation index control of dc link current is carried out, which produces lower loss of switching devices. Since the voltage control of inverter output filter capacitor is performed a decoupling of the d-q current of the induction motor is well retained. With the proposed algorithm, both high dynamic responses and satisfactory static performance can obtained.

  • PDF

Multiple Buck-Chopper using Partial Resonant Switching

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Chun Jung-Ham
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.189-192
    • /
    • 2001
  • This paper proposed that an AC-DC converter system using multiple buck-chopper operates with four choppers connecting to a number of parallel circuits. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Development of High Density High Voltage Power Supply for Traveling Wave Tubes (진행파관(TWT) 구동용 고밀도 고전압 전원공급기 개발)

  • Park Y.J;Lee K.S;Lyu S.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.256-259
    • /
    • 2003
  • In this paper describes the development testing results of high density High Voltage Power Supply(HVPS) that employ microwave TWTs. The HVPS consist of number of modules connected in series. A new design that adapt resonant circuit and high density pulse transformer to the high voltage modules makes the HVPS much more reliable. Also High voltage Solid-State modulation using fast switching devices(FET's) and the test results of modulator modules development are represented.

  • PDF

Design of a High Performance Patch Antenna for GPS Communication Systems

  • Hamedi-Hagh, Sotoudeh;Chung, Joseph;Oh, Soo-Seok;Jo, Ju-Ung;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.282-286
    • /
    • 2009
  • This paper presents the design of a patch antenna for GPS portable devices. The antenna is designed to operate at Ll band on an FR4 PCB with a thickness of 1.6mm, a dielectric constant of 3.8 and two metallization layers. The antenna has a dimension of 49mm${\times}$36mm and operates at 1.5754GHz with a return loss of -36dB and a measured bandwidth of 250MHz.

Analysis of Electrical Characteristics and Performance of Ballast for Dual Lamps (이등용 안정기의 전기적 특성 및 성능 분석)

  • Park, Yong-San;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.79-83
    • /
    • 2013
  • An electronic ballast and magnetic ballast are two major types of ballasts used in HID(High Intensity Discharge) lamp. Compared with magnetic ballasts which can last for over 30 years and are recyclable at the end of their long lifetime, electronic ballasts have very short lifetimes due to the use of the electronic devices. In this paper, we developed a magnetic ballast for dual lamps and analyzed electrical characteristics and efficiency. As the experimental results, we confirm that the magnetic ballast for dual lamps makes it possible to effectively reduce current, active and reactive powers than conventional ballast.

Self Power Generation from Vibration using Piezoelectric Bimorph Actuator (압전 바이몰프 액츄에이터의 진동에 따른 자가 발전특성)

  • Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1071-1076
    • /
    • 2008
  • This paper presents the self power generation from vibration using the piezoelectric bimorph actuator. The piezoelectric bimorph actuator was well developed with PZT-PNN-Fe piezoelectric ceramics. As the applied voltage was increased, a linear change of displacement was obtained with a relatively high ratio of 12.53 um/V for the bimorph actuator. Moreover, when the motor's rotational speed was 2000 rpm, the bimorph actuator, which has a resonance frequency of 68 Hz, exhibited the most efficient generation voltage of 10.4 V. This bimorph actuator could make the LED, emitting 60 mW, working successfully. Therefore, it is anticipated that the bimorph actuator will be useful as a power source for the next-generation electronic devices.

A Study on Electron Emission Characteristics of Photocathode Formed Under Condition in N2 Atmosphere (상압에서 제조한 포토캐소드의 전자방출 특성에 관한 연구)

  • Jeong, Hyo-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.312-316
    • /
    • 2014
  • Photoemission is a process in which photons are converted into free electrons. Photocathodes are the typical materials for the process. They emit electrons when a light is irradiated upon. The traditional method of manufacturing photocathodes is complicated, requires specialized equipment, and is limited very small sized samples. $Cs_3Sb$ photocathode was formed on a substrate in $N_2$ atmospheric conditions. The photocathode formation was a gas phase reaction with the substrate. Vacuum devices were made to test electron emission characteristics of the formed photocathode. Visible light of wavelength 475 nm was used for the primary light source. The results showed high current density and long term stability of the photoelectron emission.

On the Etching Mechanism of Parylene-C in Inductively Coupled O2 Plasma

  • Shutov, D.A.;Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.156-162
    • /
    • 2008
  • We report results on a study of inductively coupled plasma (ICP) etching of Parylene-C (poly-monochloro-para-xylylene) films using an $O_2$ gas. Effects of process parameters on etch rates were investigated and are discussed in this article from the standpoint of plasma parameter measurements, performed using a Langmuir probe and modeling calculation. Process parameters of interest include ICP source power and pressure. It was shown that major etching agent of polymer films was oxygen atoms O($^3P$). At the same time it was proposed that positive ions were not effective etchant, but ions played an important role as effective channel of energy transfer from plasma towards the polymer.