• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.031 seconds

A novel red light-emitting material and the characteristics of OLEDs using the same as red dopant

  • Lim, Seung-Han;Park, Jung-Hyun;Seo, Ji-Hoon;Ryu, Gweon-Young;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1573-1576
    • /
    • 2007
  • ABCV-Py, a new red fluorescent material, in which two identical electron donor (dimethylamino group) and acceptor (cyano group) moieties are linked to two independent biphenyl groups which share the same core phenyl, has been synthesized for use in OLED application. Performance of red doped electroluminescent devices using ABCV-Py as dopant were measured with various host materials, $Alq_3$, CBP, DPVBi, and p-terphenyl. The performance of device with DPVBi host material was better than those with other host materials and high doping concentration could be applied on device with ABCV-Py as dopant.

  • PDF

The Design of Fault Tolerant Dual System and Real Time Fault Detection for Countdown Time Generating System

  • Kim, Jeong-Seok;Han, Yoo-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.125-133
    • /
    • 2016
  • In this paper, we propose a real-time fault monitoring and dual system design of the countdown time-generating system, which is the main component of the mission control system. The countdown time-generating system produces a countdown signal that is distributed to mission control system devices. The stability of the countdown signal is essential for the main launch-related devices because they perform reserved functions based on the countdown time information received from the countdown time-generating system. Therefore, a reliable and fault-tolerant design is required for the countdown time-generating system. To ensure system reliability, component devices should be redundant and faults should be monitored in real time to manage the device changeover from Active mode to Standby mode upon fault detection. In addition, designing different methods for mode changeover based on fault classification is necessary for appropriate changeover. This study presents a real-time fault monitoring and changeover system, which is based on the dual system design of countdown time-generating devices, as well as experiment on real-time fault monitoring and changeover based on fault inputs.

Interface Study of the Intermediate Connectors in Tandem Organic Devices

  • Tang, Jian-Xin;Fung, Man-Keung;Lee, Chun-Sing;Lee, Shuit-Tong
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The intermediate connectors play crucial roles in the performance of tandem organic light-emitting diodes (OLEDs) because they are required to facilitate charge carrier transport and to guarantee transparency for light transmission and deposition compatibility. Understanding the physical properties of the intermediate connector is not only fundamentally important but is also crucial to developing high-efficiency organic devices with a tandem structure. In this study, several effective intermediate connectors in tandem OLEDs using a doped or non-doped organic p-n heterojunction were systematically investigated by studying their interfacial electronic structures and corresponding device characteristics. The working mechanisms of the intermediate connectors are discussed herein by referring to their relevant energy levels with respect to those of the neighboring organic layers. The factors affecting the operation of the intermediate connectors in tandem OLEDs, as demonstrated herein, provide guidance for the identification of new materials and device architectures for high-performance devices.

Device Design Guideline for Nano-scale SOI MOSFETs (나노 스케일 SOI MOSFET를 위한 소자설계 가이드라인)

  • Lee, Jae-Ki;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.1-6
    • /
    • 2002
  • For an optimum device design of nano-scale SOI devices, this paper describes the short channel effects of multi-gate structures SOI MOSFETs such as double gate, triple gate and quadruple gate, as well as a new proposed Pi gate using computer simulation. The simulation has been performed with different channel doping concentrations, channel widths, silicon film thickness, and vertical gate extension depths of Pi gate. From the simulation results, it is found that Pi gate devices have a large margin in determination of doping concentrations, channel widths and film thickness comparing to double and triple gate devices because Pi gate devices offer a better short channel effects.

Mechanical characterization of 100 nm-thick Au thin film using strip bending test (띠 굽힘 시험을 통한 100 nm 두께 금 박막의 기계적 특성 평가)

  • Kim, J.H.;Lee, H.J.;Han, S.W.;Baek, C.W.;Kim, J.M.;Kim, Y.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.252-257
    • /
    • 2004
  • Nanometer-sized structures are being applied to many devices including micro/nano electronics, optoelectronics, quantum devices, MEMS/NEMS, biosensors, etc. Especially, the thin film with submicron thickness is a basic structure for fabricating these devices, but its mechanical behaviors are not well understood. The mechanical properties of the thin film are different from those of the bulk structure and are difficult to measure because of its handling inconvenience. Several techniques have been applied to mechanical characterization of the thin film, such as nanoindentation test, micro/nano tensile test, strip bending test, etc. In this study, we focus on the strip bending test because of its high accuracy and moderate specimen preparation efforts, and measure Au thin film, which is a very popular material in micro/nano electronic devices. Au film is deposited on Si substrate by evaporation process, of which thickness is 100nm. Using the strip bending test, we obtain elastic modulus, yield and ultimate tensile strength, and residual stress of Au thin film.

  • PDF

Fundamentals of Liquid Crystal and Liquid Crystal Optics (액정의 비등방 물성 및 광학 특성)

  • Yu, Chang-Jae;Lee, Sin-Doo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.4
    • /
    • pp.159-167
    • /
    • 2013
  • The liquid crystal(LC) display is the most promising technology of the flat panel displays covering all applications from small mobile to large television applications. To understand the operating principles and improve the performances of the various LC displays, one should grasp the anisotropic nature of the LC and the propagation of light in the anisotropic media. Basic formulas governing the distribution of the LC molecules, directly related to the electro-optic effects of the LC devices, are described in view of the macroscopic interaction. Based on the matrix representation, the polarization analysis for the LC devices is also presented.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.

Characteristics of Lightning Overvoltages Coming in Low-Voltage Power Distribution Systems

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Su-Bong;Jeong, Dong-Cheol;Lee, Jae-Bok;Myung, Sung-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.91-98
    • /
    • 2003
  • The importance of improving the quality of electric power is being strongly raised, owing to an increasing use of sensitive and small-sized electronic devices and systems. The transient over-voltages on low-voltage power distribution systems are induced by direct or indirect lightning return strokes. These can cause damage and/or malfunction of the utility systems for home automation, office automation, factory automation, medical automation, etc. The behaviors of lightning overvoltages transferred through the transformer to the low-voltage distribution systems using a Marx generator were experimentally investigated. Furthermore, the coupling mechanisms of lightning overvoltages transferred to the low-voltage systems were clearly illustrated through a theoretical simulation using a Pspice program. The overvoltages in low-voltage ac power systems are rarely limited by the application of the surge arrester to the primary side of the distribution transformer. A superior surge protection scheme is to install surge protection devices at the service entrance switchboard and/or at the load devices in TN power systems.

Modern acupuncture-like stimulation methods: a literature review

  • Jun, Min-Ho;Kim, Young-Min;Kim, Jaeuk U.
    • Integrative Medicine Research
    • /
    • v.4 no.4
    • /
    • pp.195-219
    • /
    • 2015
  • Acupuncture therapy has been proved to be effective for diverse diseases, symptoms, and conditions in numerous clinical trials. The growing popularity of acupuncture therapy has triggered the development of modern acupuncture-like stimulation devices (ASDs), which are equivalent or superior to manual acupuncture with respect to safety, decreased risk of infection, and facilitation of clinical trials. Here, we aim to summarize the research on modern ASDs, with a focus on featured devices undergoing active research and their effectiveness and target symptoms, along with annual publication rates. We searched the popular electronic databases Medline, PubMed, the Cochrane Library, and Web of Science, and analyzed English-language studies on humans. Thereby, a total of 728 studies were identified, of which 195 studies met our inclusion criteria. Electrical stimulators were found to be the earliest and most widely studied devices (133 articles), followed by laser (44 articles), magnetic (16 articles), and ultrasound (2 articles) stimulators. A total of 114 studies used randomized controlled trials, and 109 studies reported therapeutic benefits. The majority of the studies (32%) focused on analgesia and pain-relief effects, followed by effects on brain activity (16%). All types of the reviewed ASDs were associated with increasing annual publication trends; specifically, the annual growth in publications regarding noninvasive stimulation methods was more rapid than that regarding invasive methods. Based on this observation, we anticipate that the noninvasive or minimally invasive ASDs will become more popular in acupuncture therapy.

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

  • Seung-Ho Lim;Hyeok-Jin Lim;Seong-Cheon Park
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.116-130
    • /
    • 2024
  • In the Internet-of-Things (IoT) or blockchain-based network systems, secure keys may be stored in individual devices; thus, individual devices should protect data by performing secure operations on the data transmitted and received over networks. Typically, secure functions, such as a physical unclonable function (PUF) and fully homomorphic encryption (FHE), are useful for generating safe keys and distributing data in a network. However, to provide these functions in embedded devices for IoT or blockchain systems, proper inspection is required for designing and implementing embedded system-on-chip (SoC) modules through overhead and performance analysis. In this paper, a virtual platform (SoC VP) was developed that includes a secure key generation module with a PUF and FHE. The SoC VP platform was implemented using SystemC, which enables the execution and verification of various aspects of the secure key generation module at the electronic system level and analyzes the system-level execution time, memory footprint, and performance, such as randomness and uniqueness. We experimentally verified the secure key generation module, and estimated the execution of the PUF key and FHE encryption based on the unit time of each module.