• Title/Summary/Keyword: Electronic and thermal properties

Search Result 1,074, Processing Time 0.03 seconds

Fabrication and Characteristics of $CuInS_2$ thin films produced by Vacuum Evaporation (진공증착에 의해 제조된 $CuInS_2$ 박막의 제작 및 특성)

  • Yang, Hyeon-Hun;Kim, Young-Jun;So, Soon-Youl;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.68-70
    • /
    • 2006
  • $CuInS_2$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furance annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200 [$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1:1:2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}[cm^{-3}]$, $312.502[cm^2/V{\cdot}s]$ and $2.36{\times}10^{-2}[{\Omega}{\cdot}cm]$, respectively.

  • PDF

Mechanical properties at Bi-2223 HTS tapes with various sheath materials (기지금속을 달리한 Bi-2223 초전도 선에서의 기계적 특성 변화)

  • Ha, Dong-Woo;Lee, Dong-Hoon;Yang, Joo-Sang;Kim, Sang-Chul;Hwang, Sun-Yuk;Ha, Hong-Soo;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.551-554
    • /
    • 2004
  • Bi-2223 HTS tapes are used widely for application of superconducting power systems. However there are need the properties of high strength and low AC loss. Two kinds of Bi-2223 HTS tapes with different Ag sheath were used to know the effect of sheath alloying for the strength and the resistivity. The workability and reaction degree of superconducting phase at Bi-2223 HTS tapes were investigated. We designed conventional type-Ag/alloy and double sheathed mono filament type-Ag/alloy/alloy in order to increase the strength and resistivity of matrix in Bi-2223 HTS tapes. The effect of axial strain and thermal cycling on the critical current was investigated for the Bi-2223 HTS tapes. Because the workability of double sheath Bi-2223 HTS tape was lower than one sheath Bi-2223 HTS tape, it was need additional softening treatment. Bi-2223 formation reaction was decreased by Ag alloy matrix during sintering process. Two kinds of Bi-2223/Ag tapes with different Ag sheath were used to know the effect of sheath alloying for the tensile strain. Critical current is drastically decreased for Ag/alloy and Ag/alloy/alloy sheathed tapes at tensile strain above 0.24 % and 0.34 %, respectively. This result showed that mechanical strength was increased over than 40 % by introduce double sheath at mono filament stage.

  • PDF

Reduce of Etching Damage of PZT Thin Films in $Cl_2/CF_4$ Plasma with addition of Ar and $O_2$ ($Cl_2/CF_4$ 플라즈마 Ar, $O_2$ 첨가에 따른 PZT 막막의 식각 손상 효과)

  • Kang, Myoung-Gu;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.21-25
    • /
    • 2001
  • In this study, recovery of plasma etching· damage in PZT thin film with additive gas and re-annealing after etching have been investigated. The PZT thin films were etched as a function of $Cl_2/CF_4$ with addition of Ar and $O_2$ with inductively induced plasma. The etch rates of PZT thin films were 1450 $\AA$/min at 30% additive Ar into $(Cl_2(80%)+CF_4 (20%))$ and 1100 $\AA$/min at 10% additive $O_2$ into $C(Cl_2(80%)+CF_4(20%))$. In order to recovery properties of PZT thin films after etching, the etched PZT thin films were re-annealed at various temperatures in at $O_2$ atmosphere. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ re-annealing process. The improvement of ferroelectric behavior at annealed sample is consistent with the increase of the (100) and (200) PZT peaks revealed by x-ray diffraction (XRD). From x-ray photoelectron spectroscopy (XPS) analysis, intensity of Pb-O, Zr-O and Ti-O peak are increased and the chemical residue peak is reduced by $O_2$ re-annealing. The ferroelectric behavior consistent with the dielectric nature of $Ti_xO_y$ is recovered by $O_2$ recombination during rapid thermal annealing process.

  • PDF

Simulation study of ion-implanted 4H-SiC p-n diodes (이온주입 공정을 이용한 4H-SiC p-n diode에 관한 시뮬레이션 연구)

  • Lee, Jae-Sang;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.131-131
    • /
    • 2008
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used a Monte-Carlo method. We studied the effect of channeling by Al implantation simulation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the Al distribution in 4H-SiC through the variation of the implantation energies and the corresponding ratio of the doses. The implantation energies controlled 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2\times10^{14}$ to $1\times10^{15}cm^{-2}$. In the simulation results, the Al ion distribution was deeper as increasing implantation energy and the doping level increased as increasing implantation doses. After the post-implantation annealing, the electrical properties of Al-implanted p-n junction diode were investigated by SILV ACO ATLAS numerical simulator.

  • PDF

Reduce of Etching Damage of PZT Thiin Films in $Cl_{2}/CF_{4}$ Plasma with addition of Ar and $O_2$ ($Cl_{2}/CF_{4}$ 플라즈마에 Ar,$O_2$첨가에 따른 PZT 박막의 식각 손상 효과)

  • 강명구;김경태;김창일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.21-25
    • /
    • 2001
  • In this study, recovery of plasma etching damage in PZT thin film with additive gas and re-annealing after etching have been investigated. The PZT thin films were etched as a function of Cl$_2$/CF$_4$ with addition of Ar and $O_2$ with inductively induced plasma. The etch rates of PZT thin films were 1450$\AA$/min at 30% additive Ar into (Cl$_2$(80%)+CF$_4$ (20%)) and 1100$\AA$/min at 10% additive $O_2$ into C(Cl$_2$(80%)+CF$_4$ (20%)). In order to recovery properties of PZT thin films after etching, the etched PZT thin films were re-annealed at various temperatures in at $O_2$ atmosphere. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ re-annealing process. The improvement of ferroelectric behavior at annealed sample is consistent with the increase of the (100) and (200) PZT peaks revealed by x-ray diffraction (XRD). From x-ray photoelectron spectroscopy (XPS) analysis, intensity of Pb-O, Zr-O and Ti-O peak are increased and the chemical residue peak is reduced by $O_2$ re-annealing. The ferroelectric behavior consistent with the dielectric nature of Ti$_{x}$O$_{y}$ is recovered by $O_2$ recombination during rapid thermal annealing process.s.s.

  • PDF

ANALYSIS OF THIN FILM POLYSILICON ON GLASS SYNTHESIZED BY MAGNETRON SPUTTERING

  • Min J. Jung;Yun M. Chung;Lee, Yong J.;Jeon G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.68-68
    • /
    • 2001
  • Thin films of polycrystalline silicon (poly-Si) is a promising material for use in large-area electronic devices. Especially, the poly-Si can be used in high resolution and integrated active-matrix liquid-crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs) because of its high mobility compared to hydrogenated _amorphous silicon (a-Si:H). A number of techniques have been proposed during the past several years to achieve poly-Si on large-area glass substrate. However, the conventional method for fabrication of poly-Si could not apply for glass instead of wafer or quartz substrate. Because the conventional method, low pressure chemical vapor deposition (LPCVD) has a high deposition temperature ($600^{\circ}C-1000^{\circ}C$) and solid phase crystallization (SPC) has a high annealing temperature ($600^{\circ}C-700^{\circ}C$). And also these are required time-consuming processes, which are too long to prevent the thermal damage of corning glass such as bending and fracture. The deposition of silicon thin films on low-cost foreign substrates has recently become a major objective in the search for processes having energy consumption and reaching a better cost evaluation. Hence, combining inexpensive deposition techniques with the growth of crystalline silicon seems to be a straightforward way of ensuring reduced production costs of large-area electronic devices. We have deposited crystalline poly-Si thin films on soda -lime glass and SiOz glass substrate as deposited by PVD at low substrate temperature using high power, magnetron sputtering method. The epitaxial orientation, microstructual characteristics and surface properties of the films were analyzed by TEM, XRD, and AFM. For the electrical characterization of these films, its properties were obtained from the Hall effect measurement by the Van der Pauw measurement.

  • PDF

Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells (디지털 합금 InGaAlAs 다중 양자 우물의 열처리 온도에 따른 발광 특성)

  • Cho, Il Wook;Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.321-326
    • /
    • 2013
  • The effect of rapid thermal annealing (RTA) on the optical properties of digital-alloy InGaAlAs multiple quantum well (MQW) structures have been investigated by using photoluminescence (PL) and time-resolved PL measurements as a function of RTA temperature. The MQW samples were annealed from $700^{\circ}C$ to $850^{\circ}C$ for 30 s in a nitrogen atmosphere. The MQW sample annealed at $750^{\circ}C$ exhibited the strongest PL intensity and the narrowest FWHM (Full width at half maximum), indicating the reduced nonradiative recombination centers and the improved interfaces between the wells and barriers. The MQW samples annealed at $800^{\circ}C$ and $850^{\circ}C$ showed the decreased PL intensities and blueshifted PL peaks compared to $750^{\circ}C$-annealed sample. The blueshift of PL peak with increasing RTA temperatures are ascribed to the increase of aluminum due to intermixing of gallium (Ga) and aluminum (Al) in the interfaces of InGaAs/InAlAs short-period superlattices. The decrease of PL intensity after annealing at $800^{\circ}C$ and $850^{\circ}C$ are attributed to the interface roughening and lateral composition modulation caused by the interdiffusion of Ga and Al and indium segregation, respectively. With increasing RTA temperature the PL decay becomes slower, indicating the decrease of nonradiative defect centers. The optical properties of digital-alloy InGaAlAs MQW structures can be improved significantly with optimum RTA conditions.

Effects of Annealing Temperature and Atmosphere on Properties of Porous Silicon (열처리 온도 및 분위기에 따른 다공질 실리콘의 구조 및 광학적 특성)

  • Choi, Hyun-Young;Yim, Kwang-Gug;Jeon, Su-Min;Cho, Min-Young;Kim, Ghun-Sik;Kim, Min-Su;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Leem, Jae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.581-586
    • /
    • 2010
  • The porous Si (PS) was annealed at various temperature in air, argon, and nitrogen atmosphere. Structural and optical properties of the annealed PS were investigated by scanning electron microscopy (SEM) and photoluminescence (PL). It is found that the shape of pore is changed from circle to channel as increasing annealing temperature which was annealed in air and argon atmosphere. In case of PS annealed in nitrogen atmosphere, the shape of pore is changed from channel to circle with increase annealing temperature from 600 to $800^{\circ}C$. The PL peak position is blue-shifted with increasing annealing temperature. As annealing temperature increases, the PL intensity of the PS annealed in argon is decreased but that of the PS annealed in nitrogen is increased. It might be due to the formation of Si-N bonds and it passivates the non-radiative centers which is Si dangling bonds on the surface of the PS.

Recovery of Etching Damage of the etched PZT Thin Films With $O_{2}$ Re-Annealing. ($O_{2}$ re-annealing에 의한 식각된 PZT 박막의 식각 damage 개선)

  • Kang, Myoung-Gu;Kim, Kyoung-Tae;Kim, Chang-Il;Chang, Eui-Goo;Lee, Byeong-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.8-11
    • /
    • 2001
  • In this study. the recovery of plasma induced damage in the etched PZT thin film with $O_2$ re-annealing have been investigated. The PZT thin films were etched as a function of $Cl_2/Ar$ and additive $CF_4$ into $Cl_{2}(80%)/Ar(20)%$. The etch rates of PZT thin films were $1600\dot{A}/min$ at $Cl_{2}(80%)/Ar(20)%$ gas mixing ratio and $1970\dot{A}/min$ at 30 % additive $CF_4$ into $Cl_{2}(80%)/Ar(20)%$. The etched profile of PZT films was obtained above 70 by SEM. In order to recovery properties of PZT thin films after etching, the etched PZT thin films were re-annealed at various temperatures in $O_2$ atmosphere. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ re-annealing process. The improvement of ferroelectric behavior at annealed sample is consistent with the increase of the (100) and (200) PZT phase revealed by x-ray diffraction (XRD). From XPS analysis, intensity of Pb-O, Zr-O and Ti-O peak are increased and the chemical residue peak is reduced by $O_2$ re-annealing. The ferroelectric behavior consistent with the dielectric nature of TixOy is recovered by $O_2$ recombination during rapid thermal annealing process. From AFM images, it shows that the surface roughness of re-annealed sample after etching is improved.

  • PDF

Characteristic Analysis and Preparation of Multi-layer TiNOx Thin Films for Solar-thermal Absorber (태양열 흡수판용 복층 TiNOx 박막의 제조와 특성 분석)

  • Oh, Dong-Hyun;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.820-824
    • /
    • 2014
  • TiNOx multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. 4 multi-layers of $TiO_2$/TiNOx(LMVF)/TiNOx(HMVF)/Ti/substrate have been prepared with ratio of Ar and ($N_2+O_2$) gas mixture. $TiO_2$ of top layer is anti-reflection layer on double TiNOx(LMVF)/TiNOx(HMVF) layers and Ti metal of infrared reflection layer. In this study, the crystallinity and surface properties of TiNOx thin films were estimated by X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM), respectively. The grain size of TiNOx thin films shows to increase with increasing sputtering power. The composition of thin films has been investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The TiNOx multi-layer films show the excellent optical performance beyond 9% of reflectance in those ranges wavelength.