• Title/Summary/Keyword: Electronic and thermal properties

Search Result 1,077, Processing Time 0.027 seconds

Electrical and Thermal Characterization of Organic Varnish Filled with ZrO2 Nano Filler Used in Electrical Machines

  • Selvaraj, D. Edison;Vijayaraj, R.;Sugumaran, C. Pugazhendhi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1700-1711
    • /
    • 2015
  • In the last decade it has been witnessed significant developments in the area of nano particles and nano scale fillers on electrical, thermal, and mechanical properties of polymeric materials such as resins, varnishes, enamel and bakelites. The electric and thermal properties were more important in the electrical equipments for both steady state and transient state conditions. This paper deals with the characterization of the electric and thermal properties of the pure varnish and zirconia (ZrO2) filler mixed varnish. The electric properties such as dielectric loss (tan δ), dielectric constant (ε), dielectric strength and partial discharge voltage were analyzed and detailed for different samples. It was observed that zirconia nano filler mixed varnish has the superior dielectric and thermal properties when compared to those of standard varnish. It has shown that at power frequency the 1wt% nano composite sample has the higher permittivity value when compared to other samples. It has been examined that the 1wt% sample was having higher inception and extinction voltages when compared to other samples. It has been observed that 1wt% sample has higher dielectric strength when compared with other samples. There has been an improvement of thermal property by adding few weight percent of zirconia nano fillers. There was not much variation in glass transition among the nano mixed composites. The weight loss was improved at 1wt% of the zirconia nano fillers.

A Study on Electrostatic Electrification Properties of Silicone Rubber for Thermal Bonding According to the Variation of Environment (환경변화에 의한 열 압착용 실리콘 고무의 정전기 대전 특성에 관한 연구)

  • Lee, Sung-Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.718-723
    • /
    • 2010
  • In this paper, the following results were obtained from the experiment in which electrification voltage of silicone rubber specimen for thermal bonding were measured under various time, temperature ($10{\sim}40^{\circ}C$), and humidity (30~90%) conditions and different amount of carbon additives (0~15 phr (per hundred resin)). Electrostatics electrification voltage decreased when carbon is up to 10 phr, and there was no electrification voltage in 15 phr condition. The electrostatics electrification voltage did not change over time. When the temperature was constant, electrostatics electrification voltage sharply dropped when the humidity was around 70%. That means, this condition might be appropriate for prevention of charging. The electrification voltage decreased as humidity and amount of carbon increased.

Effects of the Gas Atmosphere of ZnO Buffer Layers in the ZnO films grown on Si Substrates by RF Magnetron Sputtering (RF 스퍼터링으로 Si 기판위에 제작된 ZnO 박막에서 ZnO 버퍼층의 가스분위기 영향)

  • Park, Tae-Eun;Cho, Hyung-Koun;Kong, Bo-Hyun;Hong, Soon-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.656-661
    • /
    • 2005
  • The effects of gas atmosphere and in-situ thermal annealing in buffet layers on the characteristic of the ZnO grown by RF magnetron sputtering have been investigated. It was shown that the introduction of buffer layers grown at the gas atmospheres of the mixed $Ar/O_2$ and the in-situ thermal treatment of the ZnO buffer layer improved the structural and optical properties. In addition, the ZnO films on the buffer layer thermal-annealed at $N_2$ gas ambience showed the strong emission of the near band gap exciton with narrow linewidth by combining the high-temperature growth of the ZnO film.

Thermal treatment dependences of MFS devices in $BaMgF_4$ thin films on silicon structures ($BaMgF_4$ 박막을 이용한 MFS 디바이스의 열처리 의존성)

  • 김채규;정순원;이상우;김광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.59-62
    • /
    • 1998
  • Thermal treatment dependences of MFS devices in $BaMgF_4$ on Si structures have been investigated. $BaMgF_4$ thin films have been directly deposited on the p-Si(100) wafers at a low temperature of $300^{\circ}$ in an ultra high vacuum(UHV) system. After in-situ post-deposition annealing was conducted for 20 s at $650^{\circ}$, bias and temperature were applied to $BaMgF_4/Si$ structures. Although X-ray diffraction analysis showed that the films were polycrystalline in nature before and after bias temperature, the C-V properties were some different between with and without bias-temperature treatment.

  • PDF

Effect of Targets on Synthesis of Aluminum Nitride Thin Films Deposited by Pulsed Laser Deposition (펄스레이저법으로 증착 제조된 AlN박막의 타겟 효과)

  • Chung, J.K.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.44-48
    • /
    • 2020
  • Aluminum nitride (AlN), as a substrate material in electronic packaging, has attracted considerable attention over the last few decades because of its excellent properties, which include high thermal conductivity, a coefficient of thermal expansion that matches well with that of silicon, and a moderately low dielectric constant. AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition (PLD). The epitaxial AlN films were grown on sapphire (c-Al2O3) single crystals by PLD with AlN target and Y2O3 doped AlN target. A comparison of different targets associated with AlN films deposited by PLD was presented with particular emphasis on thermal conductivity properties. The quality of AlN films was found to strongly depend on the growth temperature that was exerted during deposition. AlN thin films deposited using Y2O3-AlN targets doped with sintering additives showed relatively higher thermal conductivity than while using pure AlN targets. AlN thin films deposited at 600℃ were confirmed to have highly c-axis orientation and thermal conductivity of 39.413 W/mK.

Insulation Breakdown Frequency Properties of PAI Enamelled Rectangular Coils According to Thermal Deterioration Temperature Variation (열적 열화 온도 변화에 따른 PAI 에나멜 각형코일의 절연 파괴 주파수 특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.829-834
    • /
    • 2016
  • Coil specimens were prepared by continuous coating on a copper wire with flexible PAI (polyamideimide) and PAI/nanosilica (5 wt%) varnish and thermally aged at 150, 200 and $250^{\circ}C$ for 5, 10 and 15 days, respectively. AC insulation breakdown voltage was investigated under inverter surge condition at 60 Hz and 1,000 Hz and insulation breakdown voltage decreased with increasing aging temperature and aging time at each 60 and 1,000 Hz.

알루미나 나노 Particle의 분산 평가 및 최적화

  • Park, Guk-Hyo;Sin, Hyo-Sun;Yeo, Dong-Hun;Hong, Yeon-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.251-251
    • /
    • 2009
  • The generation of energy and the cooling of system using thermoelectric semiconductor material have been in spotlight. Thermoelectric effect increases with the decrease of the thermal conductivity. In the thermoelectric devices, thermal conductivity is related to phonon scattering. Therefore, few studies have been conducted in the thermoelectric materials dispersed nano oxide particle for increasing the phonon scattering. However, core-shell structure which nano particle disperses in solvents and then which thermoelectric materials coated on the nano oxide particles has not been reported. In this study, we selected commercial nano powder such as $Al_2O_3$. This nano particle was about 20nm and was crushed aggregate by mechanical treatment. We have developed the effect of the dispersant and the solvent. The properties of particles were evaluated by SEM, TEM, particle size analysis, and BET. Dispersion and dispersion stability were evaluated by electronic microscope and turbidity.

  • PDF

Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys (과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향)

  • Kim, Chul-Hyun;Joo, Dae-Heon;Kim, Myung-Ho;Yoon, Eui- Pak;Yoon, Woo-Young;Kim, Kwon-Hee
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

Thermal and Mechanical Properties of a N2 Doped Porous 3C-SiC Thin Film (질소가 도핑된 다공질 3C-SiC 박막의 열적, 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.651-654
    • /
    • 2010
  • This paper describes the thermal and mechanical properties of doped thin film 3C-SiC and porous 3C-SiC. In this work, the in-situ doped thin film 3C-SiC was deposited by using atmospheric pressure chemical vapor deposition (APCVD) method at $120^{\circ}C$ using single-precursor hexamethyildisilane: $Si_2(CH_3)_6$ (HMDS) as Si and C precursors. 0~40 sccm $N_2$ gas was used as doping source. After growing of doped thin film 3C-SiC, porous structure was achieved by anodization process with 380 nm UV-LED. Anodization time and current density were fixed at 60 sec and 7.1 mA/$cm^2$, respectively. The thermal and mechanical properties of the $N_2$ doped porous 3C-SiC was measured by temperature coefficient of resistance (TCR) and nano-indentation, respectively. In the case of 0 sccm, the variations of TCR of thin film and porous 3C-SiC are similar, but TCR conversely changed with increase of $N_2$ flow rate. Maximum young's modulus and hardness of porous 3C-SiC films were measured to be 276 GPa and 32 Gpa at 0 sccm $N_2$, respectively.

Electrical and Optical Characteristics of Ceramic Metal Halide Lamp with Operating Electronic Ballast (세라믹 메탈할라이드 램프의 전자식 안정기 구동을 통한 전기적 광학적 특성에 관한 연구)

  • Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Joo-Hoo;Jang, Hyeok-Jin;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2238-2243
    • /
    • 2008
  • The use of arc tubes made of ceramic material further enhanced some of the metal halide lamp's properties. These properties translate into higher efficacy with better color rendering, stable color through lamp long life. Recently, due to an increase in the application of the ceramic metal-halide lamp, the study for the property etc. according to Ballast's driving scheme and the study for arc tube material, optimization of gas and so on are being proceeded to improve the property of the lamp. Especially, to control ceramic metal-halide lamp, the vigorous study and practical use with respect to Electronic Ballast, which has been improved in the disadvantages of the conventional Magnetic Ballast are made. In this paper, Electrical, optical and thermal characteristics are analyzed by comparing magnetic ballast with electronic ballast.