• Title/Summary/Keyword: Electronic Warfare Computer

Search Result 33, Processing Time 0.019 seconds

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

Closed-form based 3D Localization for Multiple Signal Sources (다중 신호원에 대한 닫힌 형태 기반 3차원 위치 추정)

  • Ko, Yo-han;Bu, Sung-chun;Lee, Chul-soo;Lim, Jae-wook;Chae, Ju-hui
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.78-84
    • /
    • 2022
  • In this paper, we propose a closed-form based 3D localization method in the presence of multiple signal sources. General localization methods such as TDOA, AOA, and FDOA can estimate a location when a single signal source exists. When there are multiple unknown signal sources, there is a limit in estimating the location. The proposed method calculates a cross-correlation vector of signals received by sensors having an array antenna, and estimates TDOA and AOA values from the cross-correlation values. Then, the coordinate transformation is performed using the position of the reference sensor. Then, the coordinate rotation is performed using the estimated AOA value for the transformed coordinates, and then the three-dimensional position of each emitter is estimated. The proposed method verifies its performance through computer simulation.

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements (연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.76-84
    • /
    • 2013
  • In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.