• Title/Summary/Keyword: Electronic Portal Imaging Device

Search Result 54, Processing Time 0.029 seconds

Monte Carlo simulation of the electronic portal imaging device using GATE

  • Chung, Yong-Hyun;Baek, Cheol-Ha;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.3
    • /
    • pp.11-16
    • /
    • 2007
  • In this study, the potential of a newly developed simulation toolkit, GATE for the simulation of electronic portal imaging devices (EPID) in radiation therapy was evaluated by characterizing the performance of the metal plate/phosphor screen detector for EPID. We compared the performances of the GATE simulator against MCNP4B code and experimental data obtained with the EPID system in order to validate its use for radiation therapy.

  • PDF

Application of an imaging plate to relative dosimetry of clinical x-ray beams (Imaging Plate를 이용한 의료용 광자선의 선량측정)

  • 임상욱;여인환;김대용;안용찬;허승재;윤병수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.117-122
    • /
    • 2000
  • The IP(imaging plate) has been widely used to measure the two-dimensional distribution of incident radiation since it has a high sensitivity, reusability, a wide dynamic range, a high position resolution. Particularly, the easiness of acquiring digitized image using IP poses a strong merit because recent trend of data handling prefers image digitization. In order to test its usefulness in photon beam dosimetry, we measured the off-axis ratio(OAR) on portal planes and percent depth dose(PDD) within a phantom using IP, and compared the results with the data based on EGS4 Monte Carlo particle transport code, ion-chambers, conventional films. For the measurement, we used 6 MV X-rays, various field sizes. As a result, IP showed significant deviation from ion-chamber measurement: a significant overresponse, 100% greater than that of ion-chamber measurement at deep part of the phantom. Filtration of low-energy scattered photons at deep part of the phantom using 0.5 mm thick lead sheets did improve the result, only to the unacceptable extent. However, portal dose measurement showed possibilities of If as a dosimeter by showing errors less than 5%, as compared with film measurement.

  • PDF

Development of Dose Verification Method for In vivo Dosimetry in External Radiotherapy (방사선치료에서 투과선량을 이용한 체내선량 검증프로그램 개발)

  • Hwang, Ui-Jung;Baek, Tae Seong;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The purpose of this study is to evaluate the developed dose verification program for in vivo dosimetry based on transit dose in radiotherapy. Five intensity modulated radiotherapy (IMRT) plans of lung cancer patients were used in the irradiation of a homogeneous solid water phantom and anthropomorphic phantom. Transit dose distribution was measured using electronic portal imaging device (EPID) and used for the calculation of in vivo dose in patient. The average passing rate compared with treatment planning system based on a gamma index with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 95% for the in vivo dose with the homogeneous phantom, but was reduced to 81.8% for the in vivo dose with the anthropomorphic phantom. This feasibility study suggested that transit dose-based in vivo dosimetry can provide information about the actual dose delivery to patients in the treatment room.

Location Error of the Dens in a Two-Dimensional Set-up Verification During Head and Neck Radiotherapy (뇌.두경부 방사선치료 시 전자조사문영상장치를 이용한 세트업 오차 확인에서 제2경추 치상돌기 위치의 임상적 의의)

  • Kim, Dong-Hyun;Kim, Won-Taek;Ki, Yong-Gan;Nam, Ji-Ho;Lee, Mi-Ran;Jeon, Ho-Sang;Park, Dal;Kim, Dong-Won
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2011
  • Purpose: To assess the degree and clinical impact of location error of the dens on the X-axis during radiotherapy to brain and head and neck tumors. Materials and Methods: Twenty-one patients with brain tumors or head and neck tumors who received three-dimensional conformal radiation therapy or intensity-modulated radiation therapy from January 2009 to June 2010 were included in this study. In comparison two-dimensional verification portal images with initial simulation images, location error of the nasal septum and the dens on the X-axis was measured. The effect of set-up errors of the dens was simulated in the planning system and analyzed with physical dose parameters. Results: A total of 402 portal images were reviewed. The mean location error at the nasal septum was 0.16 mm and at the dens was 0.33 mm (absolute value). Location errors of more than 3 mm were recorded in 43 cases (10.7%) at the nasal septum, compared to 133 cases (33.1%) at the dens. There was no case with a location error more than 5 mm at the nasal septum, compared to 11 cases (2.7%) at the dens. In a dosimetric simulation, a location error more than 5 mm at the dens could induce a reduction in the clinical target volume 1 coverage (V95: 100%${\rightarrow}$87.2%) and overdosing to a critical normal organ (Spinal cord V45: <0.1%${\rightarrow}$12.6%). Conclusion: In both brain and head and neck radiotherapy, a relatively larger set-up error was detected at the dens than the nasal septum when using an electronic portal imaging device. Consideration of the location error of the dens is necessary at the time of the precise radiation beam delivery in two-dimensional verification systems.

Comparison of Horizontal and Vertical Noise Power Spectrum in Measurements by Using Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료 시 전자포털 영상장치를 이용한 잡음전력스펙트럼 수평 및 수직 측정비교)

  • Kim, Ki-Won;Choi, Kwan-Woo;Jeong, Hoi-Woun;Jang, Seo-Goo;Kwon, Kyung-Tae;Son, Soon-Yong;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.171-176
    • /
    • 2016
  • The quality assurance (QA) is very important for diagnostic field and radiation therapy field to evaluate the characteristic of devices. The purpose of this study was to compare different NPS methodologies results which are measuring NPS with regard to horizontal and vertical directions by using megavoltage X-ray energies. The NPS evaluation methods were applied to the International Electro-technical Commission standard (IEC 62220-1). The electronic portal imaging devices (EPID) devices such as Siemens BEAMVIEW$^{PLUS}$, Elekta iViewGT and Varian Clinac$^R$ iX aS1000 were used. NPS data were expressed by corresponding each frequency about average of noise value corresponding the each frequency, and NPS were evaluated quantitatively by totaling up the noise values of average frequency which are on horizontal and vertical directions. In NPS results for Elekta iViewGT, NPS of horizontal and vertical by using 4 methods were indicated the difference of 3~5% between horizontal and vertical direction. In the results of Siemens BEAMVIEW$^{PLUS}$ and Varian Clinac$^R$ iX aS1000, the NPS of horizontal and vertical direction were indicated the difference of 15% when averaging the whole values. This study were evaluated the NPS of each devices by totaling up the noise values of average frequency which are on horizontal and vertical directions suggesting the quantitative evaluation method using the data.

The useage of the EPID as a QA tools (EPID의 적정관리 도구로서의 유용성에 관한 연구)

  • Cho Jung Hee;Bang Dong Wan;Yoon Seong Ik;Park Jae Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • Purpose : The aim of this study is to conform the possibility of the liquid type EPID as a QC tools to clinical indication and of replacement of the film dosimetry. Aditional aim is to describe a procedure for the use of a EPID as a physics calibration tool in the measurements of radiation beam parameters which are typically carried out with film. Method & Materials : In this study we used the Clinac 2100c/d with EPID. This system contains 65536 liquid-filled ion chambers arranged in a $256{\times}256$ matrix and the imaging area is $32.5{\times}32.5cm$ with liquid layer thickness of 1mm. The EPID was tested for different field sizes under typical clinical conditions and pixel values were calibrated against dose by producing images using various thickness of lead attenuators(lead step wedge) using 6 & 10MV x-ray. We placed various thickness of lead on the table of linear accelerator and set the portal vision an SDD of 100cm. To acquire portal image we change the field size and energy, and we recorded the average pixel value in a $3{\times}3$ pixel region of interest(ROI) at field center was recorded. The pixel values were also measured for different field sizes in order to evaluate the dependence of pixel value on x-ray energy spectrum and various scatter components. Result : The EPID, as a whole, was useful as a QA tool and dosimetry device. In mechanical check, cross-hair centering was well matched and the error was less than ?2mm and light/radiation field coincidence was less than 1mm also. In portal dosimetry the wider the field size the the higher the pixel value and as the lead thickness increase, the pixel value was exponentially decreased. Conclusions : The EPID was very suitable for QA tools and it can be used to measure exit dose during patients treatment with reasonable accuracy. But when indicate the EPID to clincal study deep consideration required

  • PDF

Characterization of X-ray Detector for CCD-based Electronic Portal Imaging Device (CCD를 이용한 전자포탈영상장치의 엑스선 계측기 특성에 관한 연구)

  • 정용현;김호경;조규성;안성규;이형구;윤세철
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.119-127
    • /
    • 2000
  • 금속판/형과스크린 계측기와 CCD 카메라를 이용한 방사선영상장치가 현재 전자포탈영상에 널리 쓰이고 있다. 이 장치의 효율적인 영상획득을 위해 계측효율이 좋고, 공간분해능력이 뛰어난 금속판/ 형과스크린 계측기의 두께를 최적화할 필요가 있었다. 이 논문에서는 금속판과 형광스크린의 두께가 계측효율과 공간분해능에 미치는 영향이 연구되었다. 이 결과는 치료 엑스선 영상장치에 쓰일 수 있는 금속판/형과스크린 계측기의 최적화된 두께를 결정하는데 쓰일 수 있다. 몬테칼로 방법을 이용하여 계산한6 MV 선형가속기에서 발생되는 엑시선의 에너지 스펙트럼을 바탕으로, 여러 가지 두께의 금속판/형광스크린에 대하여 계측효율과 공간분해능을 계산하였고, 이를 실험을 통해 검증하였다. 계측효율은 입사된 엑스선의 에너지가 형광스크린에 흡수된 비율로 계산되며, 공간분해능은 흡수된 에너지의 공간 분포를 통해 계산되었다. 계측효율은 금속판의 두께에 의해, 공간분해능은 형광스크린의 두께에 의해 결정될 수 있음을 본 연구를 통해 확인할 수 있었고, 이로써 특정이용에 관련된 금속판/형광스크린의 두께에 대한 서로 보상 (trade-off) 관계에 있음을 계산과 측정결과를 통해 확인할 수 있었고, 이로써 특정이용에 관련된 금속판/형광스크린 계측기의 최적화된 두께를 산출할 수 있게 되었다. 계산을 바탕으로 CCD를 이용한 전자포탈영상장치의 시작품을 설계 및 제작하였고 팬텀을 이용하여 영상을 얻었다. 단일 프레임 영상은 노이즈가 많으나, 프레임 평균 방법을 이용하여 영상의 질을 향상시킬 수 있었다.

  • PDF

Analysis of the Inter- and Intra-treatment Isocenter Deviations in Pelvic Radiotherapy With Small Bowel Displacement System (Small Bowel Displacement System을 이용한 골반부 방사선조사에서 치료간 및 치료중 중심점 위치변동에 관한 분석)

  • Kim Moon Kyung;Kim Dae Yong;Ahn Yong Chan;Huh Seung Jae;Lim Do Hun;Shin Kyung Hwan;Lee Kyu Chan
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.114-119
    • /
    • 2000
  • Purpose : To evaluate the e지ent and frequency of the inter- and intra-treatment isocenter deviations of the whole pelvis radiation field in using small bowel displacement system (SBDS). Methods and Materials : Using electronic portal imaging device (EPID), 302 postero-anterior 232 lateral portal images were prospectively collected from 11 patients who received pelvic radiation therapy (7 with cervix cancer and 4 with rectal cancer). All patients were treated in prone position with SBDS under the lower abdomen. Five metallic fiducial markers were placed on the image detection unit for the recognition of the isocenter and magnification. After aligning the bony landmarks of the EPID images on those of the reference image, the deviations of the isocenter were measured in right-left (RL), cranio-caudal (CC), and PA directions. Results : The mean inter-treatment deviation of the isocenter in each RL, CC, and PA direction was 1.2 mm ($\pm$ 1.6 mm), 1.0 mm ($\pm$3.0 mm), and 0.9 mm ($\pm$4.4 mm), respectively. Inter-treatment isocenter deviations over 5 mm and 10 mm in RL, CC, and PA direction were 2, 12, 24$\%$, and 0, 0, 5$\%$, respectively. Maximal deviation was detected in PA direction, and was 11.5 mm. The mean intratreatment deviation of the isocenter in RL, CC, and PA direction was 0 mm ($\pm$0.9 mm), 0.1 mm ($\pm$ 1.9mm), and 0 mm ($\pm$1.6 mm), respectively. All intra-treatment isocenter deviations over 5 mm in each direction were 0, 1, 1$\pm$, respectively. Conclusions : As the greatest and the most frequent inter-treatment deviation of the isocenter was along the PA direction, it is recommended to put more generous safety margin toward the PA direction on the lateral fields if clinically acceptable in pelvic radiotherapy with SBDD.

  • PDF

Evaluation of Image Quality for Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료의 다양한 EPID 영상 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Cho, Jeong-Hee;Lee, Jea-Hee;Jung, Jae-Yong;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.451-461
    • /
    • 2015
  • In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) ${\times}$ 10 (length) ${\times}$ 1 (width) $cm^3$ and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeam$^{TM}$ (Varian), BEAMVIEW$^{PLUS}$ (Siemens), iViewGT (Elekta) and Clinac$^{(R)}$iX (Varian) were used. As for MTF results, TrueBeam$^{TM}$(Varian) flattening filter free(FFF) showed the highest values of $0.46mm^{-1}$ and $1.40mm^{-1}$ for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and $1mm^{-1}DQE$ of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID).