• Title/Summary/Keyword: Electronic Laser Interferometry

Search Result 51, Processing Time 0.024 seconds

A Study on the Measurement of In-plane Deformations by using Electronic Speckle Pattern Interferometry and Finite Element Method (전자 스페클 간섭법과 유한요소법을 이용한 면내변형의 측정에 관한 연구)

  • Kang, Hyung-Soo;Cho, Ki-Hyon;Kim, Hong-suk;chung, Hyung-kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.187-192
    • /
    • 2002
  • In-plane ESPI(Electronic Speckle Patten Interferometry)was devised to measure in~plane defamation and rotation of a specimen with laser in this study. The conventional measuring methods of surface deformations such as the strain gauge have many demerits because they are contact and point-to-point measuring ones. But that ESPI is noncontact, nondestructive and whole field measuring method can overcome previous disadvantages. We used ESPI which is sensitive to in-plane displacement for measuring in-plane deformations of a disk. First of all, the system calibration was done due to an in-plane rotation before getting deformations of a disk. Finally we showed good agreement between theexperiment results and those of the FEA(Finit Element Analysis).

  • PDF

Optical technique of precision measurement using Electronic Speckle Pattern Interferometry (ESPI를 이용한 광학식 정밀 계측 기술)

  • 은재정;정영환;최평석;박해수
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.40-46
    • /
    • 2003
  • In this research, we accomplished the interpreting about the vibration of the object, which is the out of plane displacement in the Electronic Speckle Pattern Interferometry(ESPI), one of the optical measuring technique. The vibrating object has a inherent nodal line, therefore we can get the information about the vibration of the object by interpreting it. we used a speaker and a cantilever plate for a measurement object, and interpreted it qualitatively by using the Time-Average ESPI. In this experimental result, the speaker has the lower mode of fringe at 550Hz, 570mV, and the higher mode of fringe at 950Hz, 570mV This ESPI is a non-destructive test, and because of using the laser at measuring, it has a high resolution. The ESPI can test vibration mode regardless of the test object size, because the area which illuminated laser is the test area.

  • PDF

A Study on Measurement of Crack Length by using Laser Speckle Interferometry (레이저 스페클 간섭을 이용한 균열 길이 측정에 관한 연구)

  • Kang, Young-June;Bae, Jin-Kil;Ryu, Weon-Jae;Park, Nan-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.34-41
    • /
    • 2001
  • More accurate and fast inspection method for mechanical parts and structure is required to guarantee the safety. Conventional methods using compliance method, eddy current method, ultrasonic wave, acoustic emission for non-destructive testing in mechanical parts and structure have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money, and manpower. In this study, in order to overcome these shortcomings, we used In-plane Electronic Speckle pattern Interferometry(In-plane ESPI) that was full-field measurement and noncontact method. We detected the cracks of the specimen at a real time and measured the length of the crack by using In-place ESPI system. Finally, we compared this results with conventional microscope method.

  • PDF

Strain Analysis of Mechanical Structure by Laser Speckle Interferometry (레이저 스페클 간섭법에 의한 구조물의 변형해석)

  • 김경석;강기수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.19-23
    • /
    • 2004
  • 최근 산업의 고도화와 함께 초고온, 방사선노출 등과 같은 극한환경에서 사용되는 구조물과 MEMS 와 같은 미소 구조물(Hicrostructure)이 많아지고 있으며, 이들의 변형해석을 위한 기존의 접촉식 기법들은 그 한계를 극복해야 할 필요가 있다 해결방안으로 레이저를 이용한 비접촉 측정방식이 많은 발전을 해오고 있으며, 특히, 스페클간섭법(Speckle inteferometry)기반의 변형해석 기술이 가장 뛰어난 기술로 인정받고 있다. 스페클간섭법은 컴퓨터 화상처리기술에 힘입어 전자처리 스페클간섭법(Electronic Speckle Pattern Interferometry : ESPI)으로 발전을 하고 있으며, 자동차와 같은 대형구조물의 변형해석에서 MEMS 구조물과 같은 미소구조물 변형해석까지 그 적용범위가 매우 넓다. 본 논문에서는 ESPI 를 이용한 변형해석분야의 국내외 기술현황 및 적응사례, 발전방향를 소개하였다.(중략)

A Study on Welding Residual Stress Measurement by Laser Inteferometry and Spot Heating Method (레이저 간섭법과 점 가열법을 이용한 용접부의 잔류응력 측정에 관한 연구)

  • Hong, Kyung-Min;Lee, Dong-Hwan;Kang, Young-June
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.101-108
    • /
    • 2008
  • Residual stress is one of the causes which make defects in engineering components and materials. Many methods have been developing to measure the residual stress. Though these methods provide the information of the residual stress, they also have disadvantage like a little damage, time consumption, etc. In this paper, we devised a new experimental technique to measure residual stress in materials with a combination of laser speckle pattern interferometry and spot heating. The speckle pattern interferometer measures in-plane deformation during the heat provides for much localized stress relief. 3-D shape is used for determining heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heat and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, we could experimentally confirm that residual stress can be measured by using laser interferometry and spot heating method.

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.

A Study on the Strain Analysis of Cracked Plate by Electronic Speckle Pattern Interferometry (전자처리 Speckle Pattern 간섭법에 의한 균열평판의 Strain 해석에 관한 연구)

  • 김경석;양승필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1382-1390
    • /
    • 1995
  • Electronic Speckle Pattern Interferometry (ESPI) with a CW laser, a video system and an image processor was utilized to measure the in-plane displacement. Unlike traditional strain gauges or Moire method. ESPI method measure the in-plane displacement on real time with out any surface preparation on surface attachment. The specimen has a crack of 10*0.1 mm in the middle of plate and strain gauge was also attached on that surface to compare with ESPI method. This study reveled the ESPI method to measure the displacement and distribution of strain in the specimen. It was shown in tensile tests that the measurement by ESPI method was comparable with strain gauge.

Measurement and Analysis of in-plane deformation by laser interferometry (레이저 간섭법을 이용한 면내 변형 측정 및 해석)

  • 노경완;유원재;김동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.91-95
    • /
    • 1997
  • ESPI(Electronic Speckle Pattern Interferometry) is new optical measuring method to be able to measure the surface deformations of engineering components and materials in industrial areas. Conventional measuring method of surface deformation such as the strain gauge have many demerits because it is contact and point-to-point measuring one. But ESPI that is non-contact, whole field measuring method can overcome previous disadvantages. The speckle pattern to be formed with interference phenomena of scattering light from rough surfaces illuminated by laser light have phase information of surface In this study we used this interference phenomena and the phase shifting method to measure the in- plane deformation, together with the use of digital equipment to process the information contained in the speckle pattern and to display consequent inter ferograms. Finally we obtained good agreement between the experimenta results and those of FEM..

  • PDF