• Title/Summary/Keyword: Electronic Interlocking System

Search Result 43, Processing Time 0.02 seconds

A study on the development of distribution simulator and simulation results for use in distribution automation system of IEC 61850 protocol (IEC 61850 프로토콜의 배전자동화시스템에 사용을 위한 배전시뮬레이터 개발과 시뮬레이션 결과에 관한 연구)

  • Kim, Jae-Hong;Oh, Jae-Gon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • It is a study for the evaluation of the stability of the distribution automation system for the expansion of renewable energy. Through the Renewable Energy 3020 Implementation Plan, the government plans to expand new renewable energy and convert it to participatory energy that improves the quality of life of the people by 2030. The government has set a target of 20% of domestic supply energy for renewable energy generation by 2030. It is planning to establish more than 95 percent of its new facilities with clean energy such as solar power and wind power. By expanding the supply of renewable energy, new energy businesses and distributed power industry were fostered, and short-distance, low-voltage, and small-scale power generation were rapidly expanded rather than large-scale power development in the past. Due to this demand, the importance of power distribution facility operation has emerged and the need for distribution automation system is increasing. This paper discusses the development of a power distribution simulator for the performance and function evaluation of power distribution automation systems and presents the results of an interlocking test with the power distribution automation system. In order to introduce an advanced system into the power distribution system, it is necessary to take advantage of the transmission and distribution system. The DNP3.0 protocol is used in the distribution system and the IEC61850 protocol is used in the transmission and distribution system. It was concluded that the functions and performance of operations were satisfied when these two protocols are mixed and used in the distribution automation system.

Development of DAP(Dose Area Product) for Radiation Evaluation of Medical and Industrial X-ray generator (의료 및 산업용 X-선 발생장치의 선량평가를 위한 면적선량계(DAP) 개발)

  • Kwak, Dong-Hoon;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.495-498
    • /
    • 2018
  • In this paper, we propose an DAP system for dose evaluation of medical and industrial X-ray generator. Based on the DAP measurement technique using the Ion-Chamber, the proposed system can clearly measure the exposure radiation dose generated by the diagnostic X-ray apparatus. The hardware part of the DAP measures the amount of charge in the air that is captured by an X-ray. The high-speed processing algorithm part for cumulative radiation dose measurement through microcurrent measures the amount of charge captured by X-ray at a low implementation cost (power) with no input loss. The wired/wireless transmission/reception protocol part synchronized with the operation of the X-ray generator improves communication speed. The PC-based control program part for interlocking and aging measures the amount of X-ray generated in real time and enables measurement graphs and numerical value monitoring through PC GUI. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, the measured values using DAP increased linearly in each energy band (30, 60, 100, 150 kV). In addition, since the standard deviation of the measured value at the point of 4 division was ${\pm}1.25%$, it was confirmed that the DAP showed uniform measurements regardless of location. It was confirmed that the normal operation was not less than ${\pm}4.2%$ of the international standard.

Development of Enhanced DAP(Dose Area Product) (성능이 향상된 면적선량계(DAP) 개발)

  • Lee, Young-Ji;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.739-742
    • /
    • 2019
  • In this paper, we propose enhanced DAP(Dose Area Product). The development of enhanced DAP proposed in this paper has optimized the area dose meter that was developed previously. The development of enhanced DAP performed Optimized design of charge integrator and ADC circuit, optimization of line transceiver for RS-485 communication, optimization of display circuit, and optimization of PC-based control program for interlocking and aging. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, Radiation dose dependence and Radiation quality dependence were measured to be 4.2%, which is below ${\pm}15%$ of international standard. Energy range/Tube voltage was confirmed in the range of 30~150kV. The sensitivity difference between sensor field and sensor field area dose sensitivity was measured to be 4.3%, and it was confirmed that it operates normally under ${\pm}15%$ of international standard. In order to measure the reproducibility of the area dosimeter, it was confirmed that it was 0% and it was operated normally at less than 2% of IEC60580 recommendation. Digital resolution was confirmed to be a minimum unit of $0.01{\mu}Gy{\cdot}m^2$ within the error range for the reference dose per hour.