• 제목/요약/키워드: Electron-hole recombination

검색결과 104건 처리시간 0.03초

A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation (광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究))

  • Lee, Sang Hyup;Park, Ju Seok;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제9권4호
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

Research trend in the development of charge transport materials to improve the efficiency and stability of QLEDs (QLEDs 효율 및 안정성 향상을 위한 전하 수송 소재 개발 동향)

  • Gim, Yejin;Park, Sujin;Lee, Donggu;Lee, Wonho
    • Journal of Adhesion and Interface
    • /
    • 제23권2호
    • /
    • pp.17-24
    • /
    • 2022
  • Colloidal quantum dots (QDs) have gained attention for applications in quantum dot light emitting diodes (QLEDs) due to their high photoluminescence quantum yield, narrow emission spectra, and tunable bandgap. Nevertheless, non-radiative recombination induced by electron and hole imbalance deteriorates the device efficiency and stability. To overcome the problem, researchers have been trying to enhance hole transport properties of hole transporting layers (HTL) and/or slow down the electron injection in electron transport layer (ETL). Here, we summarize two approaches: i) development of interfacial materials between QD and ETL (or HTL); ii) engineering of HTL by blending or multi-layer approaches.

Highly Efficient Blue Organic Light-emitting Devices Based on Copper Phthalocyanine/Aromatic Diamine Composite Hole Transport Layer

  • Liao, Chi Hung;Tsai, Chih Hung;Chen, Chin H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.724-726
    • /
    • 2004
  • Highly efficient blue organic light-emitting devices (OLEDs) utilizing the idea of copper phthalocyanine (CuPc)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl- 4,4'-diamine (NPB) composite hole transport layer (CPHTL) have been fabricated. The effect of inserting CPHTL upon the performance of blue OLEDs with 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) as the blue emitter has been investigated. Compared with the luminous efficiency of the standard blue device without CPHTL (1.33 cd/A), that of the device with 40:60 CuPc/NPB CPHTL has been increased by more than twice up to 2.96 cd/A with a Commission Internationale d'Eclairage (CIE) coordinates of(x = 0.15, y = 0.10) and a power efficiency of 1.46 lm/W (20 mA/$cm^2$) at 6.39 V. The increased device efficiency is attributed to an improved balance between hole and electron currents arriving at the recombination zone.

  • PDF

A Study on the Improvement of Red EL characteristics for Organic LED device (유기발광소자의 적색 발광 특성 향상에 관한 연구)

  • Kim, H.G.;Kim, Y.B.;Kim, B.Y.;Woo, H.H.;Cho, K.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.783-785
    • /
    • 1998
  • In this study the emission characteristics of Sq dye undoped and doped specimen investigated. In Sq 14mol% doped specimen, OXD7 and Alq3 layer interpolated. This effect has been observed and mechanism characteristics have been examined. For OXD7 insert, hole flow the cathode intercept, and then hole accumulated. Because of increasing recombination probability of electron and hole highly pure color maintained. Simultaneously brightness characteristics and emission efficiency could improve.

  • PDF

A Study on the Electrode formation of an Organic EL Devices using the RF Plasma (RF 플라즈마를 이용한 유기 EL 소자의 전극형성에 관한 연구)

  • 이은학
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제17권2호
    • /
    • pp.228-235
    • /
    • 2004
  • In this thesis, it is designed efficient electrode formation on the organic luminescent device. ITO electrode is treated with $O_2$plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. It is realized efficiently electron injection to aluminum due to introduce the quantum well in cathode. In the case of device inserted the buffer layer by using the plasma poiymerization after $O_2$plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic ate made in the omitting layer. Compared with the devices without buffer layer, the turn-on voltage was lowered by 1.0(V) doc to the introduction of buffer layer Since the quantum well structure is formed in front of cathode to optimize the tunneling effect, there is improved the power efficiency more than two times.

Fabrication of $TiO_2$ Blocking Layers for CuSCN Based Dye-Sensitized Solar Cells by Atomic Layer Deposition Method

  • Baek, Jang-Mi;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.310.2-310.2
    • /
    • 2013
  • For enhancement of dye-sensitized solar cell performance, TiO2 blocking layer has been used to prevent recombination between electron and hole at the conducting oxide and electrolyte interface. In solid state dye-sensitized solar cells, it is necessary to fabricate pin-hole free TiO2 blocking layer. In this work, we deposited the TiO2 blocking layer on conducting oxide by atomic layer deposition and compared the efficiency. To compare the efficiency, we fabricate solid state dye-sensitized solar cell with using CuSCN as hole transport material. We see the efficiency improve with 40nm TiO2 blocking layer and the TiO2 blocking layer morphology was characterized by SEM. Also, we used this blocking layer in TiO2/Sb2S3/ CuSCN solar cell.

  • PDF

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • 제27권2호
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

Transport parameters in a-Se:As films for digital X-ray conversion material using the moving-photocarrier-grating technique

  • Park, Chang-Hee;Kim, Jeong-Bae;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.305-306
    • /
    • 2005
  • The effects of As addition In amorphous selenium (a-Se) films for digital X-ray conversion material have been studied using the moving photocarrier grating (MPG) technique We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density. The transport properties for As doped a-Se films obtained by using MPG technique have been compared with X-ray sensitivity for a-Se:As X-ray device. The fabricated a-Se (0.3%As) based X-ray detector exhibited the highest X-ray sensitivity of 5 samples.

  • PDF

ULTRAFAST INTERFACIAL ELECTRON TRAPPING AND RECOMBINATION IN PHOTOEXCITED COLLOIDAL CADMIUM SULFIDE

  • Kim, Seong-Kyu
    • Journal of Photoscience
    • /
    • 제4권1호
    • /
    • pp.11-16
    • /
    • 1997
  • We measured, using femtosecond pump-probe experiment, the time evolution of transient absorption in aqueous CdS colloids. The signal rises within the time resolution (= 0.5 ps) of the experiment and decays with two exponential time constants, 4.8 ps and 132 ps. The ultrafast rise of the transient absorption is considered to be for shallowly trapped conduction band electrons after photoexcitation. The amplitude ratio of the two decaying components varies with the pump intensity and the decay times increase in the presence of hole scavengers. Even though a biexponential function fits the decay well, we object hat two independent first order processes (geminate and nongeminate recombinations) are responsible for the decay. A function with an integrated rate equation for second order nongeminate recombination plus a long background fits the decay well. The long background is considered to be for deeply trapped charges at the CdS particle.

  • PDF

The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes

  • Park, Chun Woong;Kim, Young Do;Sekino, Tohru;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • 제24권4호
    • /
    • pp.279-284
    • /
    • 2017
  • The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/$TiO_2$-based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electron-hole recombination efficiency.