• Title/Summary/Keyword: Electron transport

Search Result 987, Processing Time 0.026 seconds

Effects of BCP Thickness on the Electrical and Optical Characteristics of Blue Phosphorescent Organic Light Emitting Diodes (BCP 두께가 청잭 인광 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.781-785
    • /
    • 2009
  • We have fabricated simple triple-layer blue-emitting phosphorescent organic light emitting diodes (OLEDs) using different thicknesses (25 and 55 nm) of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) electron transport layers. 1,1-bis[4-bis (4-methylphenyl)- aminophenyllcyclohexane (TAPC), bis[(4,6-di-fluorophenyl)-pyridinate-$N,C^{2'}$]picolinate (FIrpic) and N,N' -dicarbazolyl-3,5-benzene (mCP) were used as hole transport, blue guest and host materials, respectively. The driving voltage, electroluminescence (EL) efficiency and emission characteristics of devices were investigated. The maximum EL efficiency was 20 cd/A in the device with 55 nm BCP layer, which efficiency was about 33% higher than the device with 25 nm BCP layer. The higher efficiency in the 55 nm BCP device resulted from the enhanced electron-hole balance. In the EL spectrum of blue phosphorescent OLED with BCP layer, the relative intensity between 470 and 500 nm peaks was related to the location of emission zone.

Ionization and Attachment Coefficients in Mixtures of $SF_6$ and Ar ($SF_6$-Ar 혼합기체에서의 전리와부착계수)

  • 김상남;하성철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.773-778
    • /
    • 2001
  • In this dissertation the results of the combined experimental and theoretical studies designed to understand and predict the spatial growth and transport coefficients for electrons in SF$_{6}$ and SF$_{6}$-Ar mixtures have described. The ionization and attachment coefficients in pure SF$_{6}$ and SF$_{6}$-Ar mixtures have been calculated over the range of 10$_{6}$ molecule and for Ar atom proposed by other authors. The transport coefficients for electrons in (0.2%)SF$_{6}$-Ar and (0.5%)SF$_{6}$-Ar mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained in this work will provide valuable information on the fundamental haviors of electrons in weakly ionized gases and the role of electron attachment in the choice of better gases and unitary gas dielectrics or electro negative components in dielectric gas mixtures. gas mixtures.

  • PDF

Comparative analysis of the magnetic and the transport properties of electron- and hole-doped manganite films

  • Kim, K.W.;Prokhorov, V.G.;Flis, V.S.;Park, J.S.;Eom, T.W.;Lee, Y.P.;Svetchnikov, V.L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.226-226
    • /
    • 2010
  • Microstructure, magnetic and transport properties of as-deposited electron-doped $La_{1-x}Ce_xMnO_3$ and hole-doped $La_{1-x}Ce_xMnO_3$ films prepared by pulse laser deposition, with x = 0.1 and 0.3, have been investigated. The microstructural analysis reveals that the $La_{1-x}Ce_xMnO_3$ films have a column-like microstructure and a strip-domain phase with a periodic spacing of about 3c, which were not found for the $La_{1-x}Ce_xMnO_3$ ones. At the same time, the experimental results manifest that there is no fundamental difference in the magnetic and the transport properties between electron- and hole-doped manganite films, except the appearance of ferromagnetic response in the low-doped $La_{0.9}Ce_{0.1}MnO_3$ film at temperatures above the Curie point. The observed magnetic behavior, typical for the Griffiths-like phase, for this film is explained by the percolation mechanism of the ferromagnetic transition and by the presence of strip-domain phase which stimulates the magnetic phase separation.

  • PDF

Numerical Analysis of OLED Luminescence Efficiency by Hole Transport Layer Change (유기발광 소자의 수송층 두께 변화에 따른 수치적 해석)

  • Lee, Jung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1341-1346
    • /
    • 2004
  • The OLED research is gone for two directions. One is material development research, and another one is structural improvement part. All two are thing to heighten luminescence efficiency of OLED. n other to improve luminescence efficiency of OLED Electron - hole pairs must consist much more in the device Their profiles are sensitive to mobility velocity of electrons and holes. In this paper, we demonstrate the difference of velocity between hole and electron by experiments, and compare with a data of simulation and experiment changing hole carrier transport layer thickness, so we get the optimal we improve luminescence efficiency. We suggest improving the efficiency of OLEDS would be to balance the injection of electrons and holes into light emission layer of the device. And, we improve understanding of the various luminescence efficiency through experiments and numerical analysis of luminescence efficiency in variable hole carrier transport layer's thickness.

Electrical and transport properties of carbon chains encapsulated within CNT

  • KIM, Tae Hyung;KIM, Hu Sung;KIM, Yong-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.457-462
    • /
    • 2017
  • A linear carbon chain with pure sp hybridization has been intensively studied for the application of its intrinsic electrical properties to electronic devices. Owing to the high chemical reactivity derived from its unsaturated bond, encapsulation by carbon nanotubes (CNT) is provided as a promising method to stabilize the geometry of the linear carbon chain. Although the influence of CNT on the carbon chain has extensively been studied in terms of both electronic structure and geometries, the electron transport properties has not been discussed yet. In this regard, we provide the systematic atomic-scale analyses of the properties of the linear carbon chain within CNT based on a computational approach combining density-functional theory (DFT) and matrix green function (MGF) method. Based on the DFT calculations, the influence of CNT on electronic structures of the linear carbon chain is provided as well as its electrical origin. Via MGF calculations, we also identify the electron transport properties of the carbon chain - CNT complex.

  • PDF

Dependence of Light-Emitting Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes on Electron Injection and Transport Materials

  • Lee, Jeong-Ik;Lee, Jonghee;Lee, Joo-Won;Cho, Doo-Hee;Shin, Jin-Wook;Han, Jun-Han;Chu, Hye Yong
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.690-695
    • /
    • 2012
  • We investigate the light-emitting performances of blue phosphorescent organic light-emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) (Bphen), 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (Tm3PyPB), and 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of $1,000cd/m^2$ and $10,000cd/m^2$, respectively.

Analysis of the Mean Energy in $SiH_4-Ar$ Mixture Gases ($SiH_4-Ar$ 혼합기체의 평균 에너지에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.57-61
    • /
    • 2006
  • This paper calculates and gives the analysis of mean energy in pure $SiH_4,\;Ar-SiH_4$ mixture gases ($SiH_4-0.5[%],\;5[%]$) over the range of $E/N =0.01{\sim}300[Td]$, p = 0.1, 1, 5.0 [Torr] by Monte Carlo the Backward prolongation method of the Boltzmann equation using computer simulation without using expensive equipment. The results have been obtained by using the electron collision cross sections by TOF, PT, SST sampling, compared with the experimental data determined by the other author. It also proved the reliability of the electron collision cross sections and shows the practical values of computer simulation. The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $SiH_4$ and Ar, were used. The differences of the transport coefficients of electrons in $SiH_4$, mixtures of $SiH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

The Study on the Electron ionization and Attachment Coefficients in $SF_6$+Ar Mixtures Gas ($SF_6$+Ar 혼합기체의 전리 및 부착계수에 관한 연구)

  • 김상남;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.591-593
    • /
    • 2000
  • In this paper, we describe the results of a combined experimental theoretical study designed to understand and predict the dielectric properties of SF$_{6}$ and SF$_{6}$+Ar mixtures. The electron transport, ionization, and attachment coefficients for pure SF$_{6}$ and gas mixtures containing SF$_{6}$ has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] SF$_{6}$+Ar mixtures were measured by time- of- flight method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with the experimental and theoretical for a rang of E/N values. Electron energy distribution functions computed from numerical solutions of the electron transport and reaction coefficients as functions of E/N. We have calculated $\alpha$,η and $\alpha$-η the ionization, attachment coefficients, effective ionization coefficients, and (E/N), the limiting breakdown electric-field to gas density ratio, in SF$_{6}$ and SF$_{6}$+Ar mixtures by numerically solving the Boltzmann equation for the electron energy distribution. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of theections of the

  • PDF

Effect of Boron Content and Temperature on Interactions and Electron Transport in BGaN Bulk Ternary Nitride Semiconductors

  • Bouchefra, Yasmina;Sari, Nasr-Eddine Chabane
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • This work takes place in the context of the development of a transport phenomena simulation based on group III nitrides. Gallium and boron nitrides (GaN and BN) are both materials with interesting physical properties; they have a direct band gap and are relatively large compared to other semiconductors. The main objective of this paper is to study the effect of boron content on the electron transport of the ternary compound $B_xGa_{(1-x)}N$ and the effect of the temperature of this alloy at x=50% boron percentage, specifically the piezoelectric, acoustic, and polar optical scatterings as a function of the energy, and the electron energy and drift velocity versus the applied electric field for different boron compositions ($B_xGa_{(1-x)}N$), at various temperatures for $B_{0.5}Ga_{0.5}N$. Monte carlo simulation, was employed and the three valleys of the conduction band (${\Gamma}$, L, X) were considered to be non-parabolic. We focus on the interactions that do not significantly affect the behavior of the electron. Nevertheless, they are introduced to obtain a quantitative description of the electronic dynamics. We find that the form of the velocity-field characteristic changes substantially when the temperature is increased, and a remarkable effect is observed from the boron content in $B_xGa_{(1-x)}N$ alloy and the applied field on the dynamics of holders within the lattice as a result of interaction mechanisms.

A Study on Electric Characteristics of Multi-layer by Light Organic Emitting Diode (유기발광소자(Organic Light Emitting Diode)의 다층박막에 대한 전기적 특성 연구)

  • Lee Jung-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.76-81
    • /
    • 2005
  • This research approached electrical characteristics of organic light emitting diodes getting into the spotlight by next generation display device. Basic mechanism of OLED's emitting is known as that electron by cathode of lower work function and hole by anode of higher work function are driven and recombine exciton-state being flowed in emitting material layer passing carrier transport layer In order to make many electron-hole pairs, we must manufacture device in multi-layer structure. There are Carrier Injection Layer(CIL), Carrier Transport Layer(CTL) and Emitting Material Layer(EML) in multi-layer structure. It is important that regulate thickness of layer for high luminescence efficiency and set mobility of hole and electron.

  • PDF