• Title/Summary/Keyword: Electron recombination

Search Result 246, Processing Time 0.029 seconds

Suppression of Charge Recombination Rate in Nanocrystalline SnO2 by Thin Coatings of Divalent Oxides in Dye-Sensitized Solar Cells

  • Lee, Chae-Hyeon;Lee, Gi-Won;Kang, Wee-Kyung;Lee, Doh-Kwon;Ko, Min-Jae;Kim, Kyoung-Kon;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3093-3098
    • /
    • 2010
  • The core-shell $SnO_2$@AO (A=Ni, Cu, Zn and Mg) films were prepared and the effects of coatings on photovoltaic properties were investigated. Studies on X-ray photoelectron spectroscopy, energy dispersive X-ray analysis and transmission electron microscopy showed the formation of divalent oxides on the surface of $SnO_2$ nanoparticles. It was commonly observed that all the dye-sensitized core-shell films exhibited higher photovoltage than the bare $SnO_2$ film. Transient photovoltage measurements confirmed that the improved photovoltages were related to the decreased time constants for electron recombination.

The Study of In Clustering Effects in InGaN/GaN Multiple Quantum Well Structure (InGaN/GaN 다중 양자우물 구조에서의 In 응집 현상의 연구)

  • 조형균;이정용;김치선;양계모
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.636-639
    • /
    • 2001
  • InGaN/GaN multiple quantum wells (MQWs) grown with various growth interruptions between the InGaN well and GaN barrier by metal-organic chemical vapor deposition were investigated using photoluminescence, high-resolution transmission electron microscopy, and energy filtered transmission electron microscopy (EFTEM). The luminescence intensity of the MQWs with growth interruptions is abruptly reduced compared to that of the MQW without growth interruption. Also, as the interruption time increases the peak emission shows a continuous blue shift. Evidence of indium clustering is directly observed both by using an indium ratio map of the MQWs and from indium composition measurements along an InGaN well using EFTEM. The higher intensity and lower energy emission of light from the MQW grown without interruption showing indium clustering is believed to be caused by the recombination of excitons localized in indium clustering regions and the increased indium composition in these recombination centers.

  • PDF

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

POLARITY AND ION RECOMBINATION CORRECTION FACTORS OF A THIMBLE TYPE IONIZATION CHAMBER WITH DEPTH IN WATER IN THE MEGAVOLTAGE BEAMS

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.43-48
    • /
    • 2009
  • When the PDD (percentage depth dose) in the megavoltage beams is measured in the water phantom, the polarity and ion recombination effects of ionization chambers with depth in water are not usually taken into consideration. We try to investigate if those variations with depth should be taken into consideration or could be ignored for the thimble type semiflex ionization chamber (PTW $31010^{TM}$, SN 1551). According to the recommendation of IAEA TRS-398, the 4 representative depths of $d_s$, $d_{max}$, $d_{90}$ and $d_{50}$ were used for the electron beams. For the photon beams, the 4 depths were arbitrarily chosen for the photon beams, which were $d_s$, $d_{max}$, $d_{10}$ and $d_{20}$. For the high energy photon beam both polarity and ion recombination factors of the chamber with depth in water gives the good agreements within the maximum $\pm$0.2%, while the $C_{polS}$ with depth came within the maximum $\pm$ 0.4% and the $C_{IRS}$ within the maximum $\pm$0.6% in every electron beam used. This study shows that PDI (percentage depth ionization) could be a good approximation to PDD for the chamber used.

Transport phenomena of a-Se:As thin film for digital X-ray Conversion Material (디지털 X-선 변환물질을 위한 비소(As) 첨가 비정질 셀레늄(a-Se) 박막의 수송현상)

  • Park, Chang-Hee;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.282-283
    • /
    • 2006
  • The transport phenomena of arsenic (As) doped amorphous selenium(a-Se:As) thin film for digital X-ray conversion material has been reported. The effect of As addition on the carrier mobility and recombination lifetime in a-Se:As sample has been measured using the moving photo-carrier grating (MPG) technique. An Increase in hole mobility and recombination was observed when 0.3% arsenic, was added into a-Se sample, whereas electron mobility decrease with arsenic addition due to the defect density. The fabricated a-Se:03% As device exhibited the highest X-ray sensitivity.

  • PDF

Transport property of a Se:As films for digital x ray imaging

  • Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.85-88
    • /
    • 2006
  • The transport properties of amorphous selenium typical of the material used in direct conversion x-ray imaging devices are reported. The effects of As addition on the carrier mobility and recombination lifetime in amorphous selenium (a-Se) films have been studied using the moving photocarrier grating (MPG) technique. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density. The transport properties for As doped a-Se films obtained by using MPG technique have been compared with the drift mobilities of holes and electrons obtained by time of flight (TOF) measurement.

  • PDF

Dissociative Recombination Rates of O₂+ Ion with Low Energy Electrons

  • 성정희;선호성
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1065-1073
    • /
    • 1996
  • The dissociative recombination of O2+(v+)+e-→O(1S)+O(1D) has been theoretically investigated using the multichannel quantum defect theory (MQDT). Cross sections and rate coefficients at various electron energies are calculated. The resonant structures in cross section profile, which are hardly measurable in experiments, are also determined and the existence of Rydberg states is found to affect the rates. The theoretical rate coefficients are computed to be smaller than experimental ones. The reasons for this difference are explained. The two-step MQDT procedure is found to be very useful and promising in calculating the state-to-state rates of the dissociative recombination reaction which is a very important and frequently found phenomenon in Earth's ionosphere.

Use of Cylindrical Chambers as Substitutes for Parallel-Plate Chambers in Low-Energy Electron Dosimetry

  • Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Cho, Jin Dong;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Current dosimetry protocols recommend the use of parallel-plate chambers in electron dosimetry because the electron fluence perturbation can be effectively minimized. However, substitutable methods to calibrate and measure the electron output and energy with the widely used cylindrical chamber should be developed in case a parallel-plate chamber is unavailable. In this study, we measured the correction factors and absolute dose-to-water of electrons with energies of 4, 6, 9, 12, 16, and 20 MeV using Farmer-type and Roos chambers by varying the dose rates according to the AAPM TG-51 protocol. The ion recombination factor and absolute dose were found to be varied across the chamber types, energy, and dose rate, and these phenomena were remarkable at a low energy (4 MeV), which was in good agreement with literature. While the ion recombination factor showed a difference across chamber types of less than 0.4%, the absolute dose differences between them were largest at 4 MeV at approximately 1.5%. We therefore found that the absolute dose with respect to the dose rate was strongly influenced by ion-collection efficiency. Although more rigorous validation with other types of chambers and protocols should be performed, the outcome of the study shows the feasibility of replacing the parallel-plate chamber with the cylindrical chamber in electron dosimetry.

Nanotube-based Dye-sensitized Solar Cells

  • Kim, Jae-Yup;Park, Sun-Ha;Choi, Jung-Woo;Shin, Jun-Young;Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.71-71
    • /
    • 2011
  • Dye-sensitized solar cells (DSCs) have drawn great academic attention due to their potential as low-cost renewable energy sources. DSCs contain a nanostructured TiO2 photoanode, which is a key-component for high conversion efficiency. Particularly, one-dimensional (1-D) nanostructured photoanodes can enhance the electron transport for the efficient collection to the conducting substrate in competition with the recombination processes. This is because photoelectron colletion is determined by trapping/detrapping events along the site of the electron traps (defects, surface states, grain boundaries, and self-trapping). Therefore, 1-D nanostructured photoanodes are advantageous for the fast electron transport due to their desirable features of greatly reduced intercrystalline contacts with specified directionality. In particular, anodic TiO2 nanotube (NT) electrodes recently have been intensively explored owing to their ideal structure for application in DSCs. Besides the enhanced electron transport properties resulted from the 1-D structure, highly ordered and vertically oriented nanostructure of anodic TiO2 NT can contribute additional merits, such as enhanced electrolyte diffusion, better interfacial contact with viscous electrolytes. First, to confirm the advantages of 1-D nanostructured material for the photoelectron collection, we compared the electron transport and charge recombination characteristics between nanoparticle (NP)- and nanorod (NR)-based photoanodes in DSCs by the stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). We confirmed that the electron lifetime of the NR-based photoanode was much longer than that of the NP-based photoanode. In addition, highly ordered and vertically oriented TiO2 NT photoanodes were prepared by electrochemical anodization method. We compared the photovoltaic properties of DSCs utilizing TiO2 NT photoanodes prepared by one-step anodization and two-step anodization. And, to reduce the charge recombination rate, energy barrier layer (ZnO, Al2O3)-coated TiO2 NTs also applied in DSC. Furthermore, we applied the TiO2 NT photoanode in DSCs using a viscous electrolyte, i.e., cobalt bipyridyl redox electrolyte, and confirmed that the pore structure of NT array can enhance the performances of this viscous electrolyte.

  • PDF

A CONFIRMATION OF ELECTRON TEMPERATURE GRADIENT IN OUR GALAXY

  • Hong, Seung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.13 no.1
    • /
    • pp.35-44
    • /
    • 1980
  • Various assumptions used in interpreting the observations of hydrogen recombination lines are critically assessed to confirm the gradient of electron temperature with distance from the galactic center. The total temperature increase from 5 to 13 kpc is about 2,500 K. Among many suggestions, we have singled out the decrease of trace dement abundances with the galactoccntric distance as the most viable cause for the temperature gradient. This will impose an important constraint on evolutionary models of the Galaxy.

  • PDF