• Title/Summary/Keyword: Electron recombination

Search Result 248, Processing Time 0.033 seconds

Study of The Amorphous Selenium (a-Se) using 2-dimensional Device Simulator (2차원 소자 시뮬레이터를 이용한 비정질 셀레늄(a-Se) 분석)

  • Kim, Si-Hyoung;Kim, Chang-Man;Nam, Ki-Chang;Kim, Sang-Hee;Song, Kwang-Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.187-193
    • /
    • 2012
  • Digital X-ray image detector has been applied for medical and industrial fields. Photoconductors have been used to convert the X-ray energy to electrical signal on the direct digital X-ray image detector and amorphous selenium (a-Se) has been used as a photoconductor, normally. In this work, we use 2-dimensional device (2-D) simulator to study about physical phenomena in the a-Se, when we irradiate electromagnetic radiation (${\lambda}=486nm$) on the a-Se surface. We evaluate the electron-hole generation rate, electron-hole recombination rate, and electron/hole distribution in the a-Se using 2-D simulator. This simulator divides the device into triangle and calculates using interpolation method. This simulation method has been proposed for the first time and we expect that it will be applied for the development of digital X-ray image detector.

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF

Effects of Surface Characteristics of TiO2 Nanotublar Composite on Photocatalytic Activity (TiO2 복합 광촉매의 표면 특성과 광촉매 효율)

  • Lee, Jong-Ho;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.556-564
    • /
    • 2014
  • To synthesize a high-performance photocatalyst, N doped $TiO_2$ nanotubes deposited with Ag nanoparticles were synthesized, and surface characteristics, electrochemical behaviors, and photocatalytic activity were investigated. The $TiO_2$ nanotubular photocatalyst was fabricated by anodization; the Ag nanoparticles on the $TiO_2$ nanotubes were synthesized by a reduction reaction in $AgNO_3$ solution under UV irradiation. The XPS results of the N doped $TiO_2$ nanotubes showed that the incorporated nitrogen ions were located in interstitial sites of the $TiO_2$ crystal structure. The N doped titania nanotubes exhibited a high dye degradation rate, which is effectively attributable to the increase of visible light absorption due to interstitial nitrogen ions in the crystalline $TiO_2$ structure. Moreover, the precipitated Ag particles on the titania nanotubes led to a decrease in the rate of electron-hole recombination; the photocurrent of this electrode was higher than that of the pure titania electrode. From electrochemical and dye degradation results, the photocurrent and photocatalytic efficiency were found to have been significantly affected by N doping and the deposition of Ag particles.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Enhancement of Photovoltaic Performance of Fluorescence Materials added TiO2 electrode in Dye-sensitized Solar Cells (형광물질을 이용한 염료감응태양전지의 효율향상)

  • Cheon, JongHun;Lee, JeongGwan;Jung, MiRan;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies and low cost processes compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photo excited dyes into the conduction band of the semiconductor electrode. The oxidized dye is reduced by the hole injection into either the hole conductor or the electrolyte. Thus, the light harvesting effect of dye plays an important role in capturing the photons and generating the electron/hole pair, as well as transferring them to the interface of the semiconductor and the electrolyte, respectively. We used the organic fluorescence materials which can absorb short wavelength light and emit longer wavelength region where dye sensitize effectively. In this work, the DSSCs were fabricated with fluorescence materials added $TiO_2$ photo-electrode which were sensitized with metal-free organic dyes. The photovoltaic performances of fluorescence aided DSSCs were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were measured in order to characterize the effects of the additional light harvesting effect in DSSC. Electro-optical measurements were also used to optimize the fluorescence material contents on TiO2 photo-electrode surface for higher conversion efficiency (${\eta}$), fill factor (FF), open-circuit voltage (VOC) and short-circuit current (ISC). The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Enhancement of Photocurrent Generation by C60-encapsulated Single-walled Carbon Nanotubes in Ru-sensitized Photoelectrochemical Cell

  • Lee, Jung-Woo;Park, Tae-Hee;Lee, Jong-Taek;Jang, Mi-Ra;Lee, Seung-Jin;Kim, Hee-Su;Han, Sung-Hwan;Yi, Whi-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2689-2693
    • /
    • 2012
  • Single-walled carbon nanotubes (SWNTs) and $C_{60}$-encapsulated SWNTs ($C_{60}@SWNTs$) are introduced to Ru-sensitized photoelectrochemical cells (PECs), and photocurrents are compared between two cells, i.e., an $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell and an $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell. [L = 2,2'-bipyridine-4,4'-dicarboxylic acid, DAPV = di-(3-aminopropyl)-viologen, and ITO = indium-tin oxide] The photocurrents are increased by 70.6% in the presence of $C_{60}@SWNTs$. To explain the photocurrent increase, the reverse-field emission method is used, i.e., $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell (or $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell) as an anode and a counter electrode Pt as a cathode in the external electric field. The improved field emission properties, i.e., ${\beta}$ (field enhancement factor) and emission currents in the reverse-field emission with $C_{60}@SWNTs$ indicate the enhancement of the PEC electric field, which implies the improvement of the electron transfer rate along with the reduced charge recombination in the cell.

Co-sensitization of N719 with an Organic Dye for Dye-sensitized Solar Cells Application

  • Wu, Zhisheng;Wei, Yinni;An, Zhongwei;Chen, Xinbing;Chen, Pei
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1449-1454
    • /
    • 2014
  • The co-sensitization of N719 with a cyclic thiourea functionalized organic dye, coded AZ5, for dye-sensitized solar cells (DSSCs) was demonstrated. Due to its intensive absorption in ultraviolet region, AZ5 could compensate the loss of light harvest induced by triiodide, thereby the short-circuit photocurrent density ($J_{sc}$) was increased for co-sensitized (N719+AZ5) DSSC. Moreover, the electron recombination and dye aggregation were retarded upon N719 cocktail co-sensitized with AZ5, thus the open-circuit voltage ($V_{oc}$) of co-sensitized device was enhanced as well. The increased $J_{sc}$ (17.9 $mA{\cdot}cm^{-2}$) combined with the enhanced $V_{oc}$ (698 mV) ultimately resulted in an improved power conversion efficiency (PCE) of 7.91% for co-sensitized DSSC, which was raised by 8.6% in comparison with that of N719 (PCE = 7.28%) sensitized alone. In addition, co-sensitized DSSC exhibited a better stability than that of N719 sensitized device probably due to the depression of dye desorption.

Photocatalytic activity of rutile TiO2 powders coupled with anatase TiO2 nanoparticles using surfactant (계면활성제를 이용하여 anatase TiO2 나노 입자와 결합된 rutile TiO2 분말의 광촉매 특성)

  • Byun, Jong Min;Park, Chun Woong;Kim, Young In;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of $TiO_2$, i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile $TiO_2$ because these coupled $TiO_2$ powders can retain the benefits of $TiO_2$, one of the best photocatalysts. In this study, anatase $TiO_2$ nanoparticles are synthesized and coupled on the surface of rutile $TiO_2$ powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase $TiO_2$ nanoparticles and disperse anatase $TiO_2$ nanoparticles uniformly on the surface of rutile $TiO_2$ powders. Rutile $TiO_2$ powders coupled with anatase $TiO_2$ nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled $TiO_2$ powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

Tunable doping sites and the impacts in photocatalysis of W-N codoped anatase TiO2

  • Choe, Hui-Chae;Sin, Dong-Bin;Yeo, Byeong-Cheol;Song, Tae-Seop;Han, Sang-Su;Park, No-Jeong;Kim, Seung-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.246-246
    • /
    • 2016
  • Tungsten-nitrogen (W-N) co-doping has been known to enhance the photocatalytic activity of anatase titania nanoparticles by utilizing visible light. The doping effects are, however, largely dependent on calcination or annealing conditions, and thus, the massive production of quality-controlled photocatalysts still remains a challenge. Using density functional theory (DFT) thermodynamics and time-dependent DFT (TDDFT) computations, we investigate the atomic structures of N doping and W-N co-doping in anatase titania, as well as the effect of the thermal processing conditions. We find that W and N dopants predominantly constitute two complex structures: an N interstitial site near a Ti vacancy in the triple charge state and the simultaneous substitutions of Ti by W and the nearest O by N. The latter case induces highly localized shallow in-gap levels near the conduction band minimum (CBM) and the valence band maximum (VBM), whereas the defect complex yielded deep levels (1.9 eV above the VBM). Electronic structures suggest that substitutions of Ti by W and the nearest O by N improves the photocatalytic activity of anatase by band gap narrowing, while defective structure degrades the activity by an in-gap state-assisted electron-hole recombination, which explains the experimentally observed deep level-related photon absorption. Through the real-time propagation of TDDFT (rtp-TDDFT), we demonstrate that the presence of defective structure attracts excited electrons from the conduction band to a localized in-gap state within a much shorter time than the flat band lifetime of titania. Based on these results, we suggest that calcination under N-rich and O-poor conditions is desirable to eliminate the deep-level states to improve photocatalysis.

  • PDF