• Title/Summary/Keyword: Electron emission sites

Search Result 23, Processing Time 0.018 seconds

Structural and Optical Properties of GaN Nanowires Formed on Si(111)

  • Han, Sangmoon;Choi, Ilgyu;Song, Jihoon;Lee, Cheul-Ro;Cho, Il-Wook;Ryu, Mee-Yi;Kim, Jin Soo
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.95-99
    • /
    • 2018
  • We discuss the structural and optical characteristics of GaN nanowires (NWs) grown on Si(111) substrates by a plasma-assisted molecular-beam epitaxy. The GaN NWs with high crystal quality were formed by adopting a new growth approach, so called Ga pre-deposition (GaPD) method. In the GaPD, only Ga was supplied without nitrogen flux on a SiN/Si surface, resulting in the formation of Ga droplets. The Ga droplets were used as initial nucleation sites for the growth of GaN NWs. The GaN NWs with the average heights of 60.10 to 214.62 nm obtained by increasing growth time. The hexagonal-shaped top surfaces and facets were observed from the field-emission electron microscope images of GaN NWs, indicating that the NWs have the wurtzite (WZ) crystal structure. Strong peaks of GaN (0002) corresponding to WZ structures were also observed from double crystal x-ray diffraction rocking curves of the NW samples. At room temperature, free-exciton emissions were observed from GaN NWs with narrow linewidth broadenings, indicating to the formation of high-quality NWs.

Variations in Nutrients & CO2 Uptake Rates and Photosynthetic Characteristics of Saccharina japonica from the South Coast of Korea (다시마(Saccharina japonica)의 생장에 따른 영양염 및 CO2 흡수율과 광합성 특성 변화)

  • Hwang, Jae-Ran;Shim, Jeong-Hee;Kim, Jeong-Bae;Kim, Sook-Yang;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.196-205
    • /
    • 2011
  • To investigate the contribution of macroalgae to biogeochemical nutrients and carbon cycles, we measured the uptake rates of nutrients and $CO_2$ and characteristics of fluorescence of Saccharina japonica (Laminaria japonica Areschoug) using an incubation method in an acrylic chamber. From January to May 2011, S.japonica was sampled at Ilkwang, one of well-known macroalgae culture sites around Korea and ranged 46~288 cm long and 4.8~22.0 cm wide of whole thallus. The production rate of dissolved oxygen by S. japonica (n=25) was about $6.9{\pm}5.8{\mu}mol\;g^{-1}$ fresh weight(FW) $h^{-1}$. The uptake rate of total dissolved inorganic carbon ($TCO_2$), calculated by total alkalinity and pH, was $8.9{\pm}7.9{\mu}mol\;g^{-1}\;FW\;h^{-1}$. Mean nutrients uptake were $175.6{\pm}161.1\;nmol\;N\;g^{-1}\;FW\;h^{-1}$ and $12.7{\pm}10.1\;nmol\;P\;g^{-1}\;FW\;h^{-1}$. There were logarithmic relationships between thallus length and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (<100-150 cm) were much more efficient at nutrients and $CO_2$ uptake than old specimens > 150 cm. There was a positive linear correlation ($r^2$=9.4) existed between the dissolved oxygen production rate and the $TCO_2$ uptake rate, suggesting that these two factors may serve as good indicators of S. japonica photosynthesis. There was also positive linear relationship between maximal quantum yield ($F_v/F_m$) and production/uptake rates of dissolved oxygen, $TCO_2$ and phosphate, suggested that $F_v/F_m$ could be used as a good indicator of photosynthetic ability and $TCO_2$ consumption of macroalgae. Maximum relative electron transport rate ($rETR_{max}$) of S. japonica increased as thallus grew and was high in distal part of thallus which may be resulted from the increase of photosynthetic cell density per area. The annual $TCO_2$ uptake by S. japonica in Gijang area was estimated about $1.0\sim1.7{\times}10^3C$ ton, which was about 0.02-0.03% of carbon dioxide emission in Busan City. Thus, more research should be focused on macroalgae-based biogeochemical cycles to evaluate the roles and contributions of macroalgae to the global carbon cycle.

Evaluation of shear-bond strength between different self-adhesive resin cements with phosphate monomer and zirconia ceramic before and after thermocycling (인산염계 기능성 단량체가 첨가된 수종의 자가 접착 레진시멘트와 지르코니아 세라믹 사이 열순환 전후 전단결합강도 비교)

  • Lee, Ji-Hun;Kim, Min-Kyung;Lee, Jung-Jin;Ahn, Seung-Geun;Park, Ju-Mi;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.318-324
    • /
    • 2015
  • Purpose: This study compared shear bond strengths of five self-adhesive cements with phosphate monomer to zirconium oxide ceramic with and without airborn particle abrasion. Materials and methods: One hundred zirconia samples were air-abraded ($50{\mu}mAl_2O_3$). One hundred composite resin cylinders were fabricated. Composite cylinders were bonded to the zirconia samples with either Permacem 2.0 (P), $Clearfil^{TM}$ SA Luting (C), $Multilink^{(R)}$ Speed (M), $RelyX^{TM}$ U200 Automix (R), G-Cem $LinkAce^{TM}$ (G). All bonded specimens were stored in distilled water ($37^{\circ}C$) for 24 h and half of them were additionally aged by thermocycling ($5^{\circ}C$, $55^{\circ}C$, 5,000 times). The bonded specimens were loaded in shear force until fracture (1 mm/min) by using Universal Testing Machine (Model 4201, Instron Co, Canton, MA, USA). The failure sites were inspected under field-emission scanning electron microscopy. The data was analyzed with ANOVA, Tukey HSD post-hoc test and paired samples t-test ($\alpha$=.05). Results: Before and after thermocycling, $Multilink^{(R)}$ Speed (M) revealed higher shear-bond strength than the other cements. G-Cem $LinkAce^{TM}$ (G) showed significantly lower bond strengths after thermocycling than before treatment (P<.05), but the other groups were not significantly different (P>.05). Conclusion: Most self-adhesive cements with phosphate monomer showed high shear bond strength with zirconia ceramic and weren't influenced by thermocycling, so they seem to valuable to zirconia ceramic bonding.