• Title/Summary/Keyword: Electron delocalization

Search Result 44, Processing Time 0.019 seconds

Synthesis and Spectral properties of meso-porphyrin (meso-Porphyrin의 합성과 분광특성)

  • Lee, Bum-Hoon;Jaung, Jae-Yun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.100-103
    • /
    • 2003
  • The basic structure of porphyrin consists of four pyrrole units linked by four methine bridges. It reveals that the cyclic 16-atom is the preferred cyclic system for n-electron delocalization since this pathway exhibits the highest degree of bond equalization. Scheme 1 (a) shows the 16-center system is the chromogen of the porphyrins, which allows 18-electron delocalization that could produce aromatic characteristics (1,2). (omitted)

  • PDF

Isotropic NMR Shifts in Some Pyridine-Type Ligands Complexed with Paramagnetic Undecatungstocobalto(Ⅱ)silicate and Undecatungstonickelo(Ⅱ) silicate Anions. Identifications of Dumbbell-Shaped 4,$4^{\prime}$-Bipyridyl Complexes

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.500-506
    • /
    • 1993
  • $^1H$ and $^{13}C$ NMR spectra for pyridine, ${\beta}$-and ${\gamma}$-picoline, pyrazine, and 4,4'-bipyridyl complexed with paramagnetic undecatungstocobalto(II)silicate and undecatungstonickelo(II)silicate anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines have been observed at room temperature. The isotropic shifts in nickel complexes can be interpreted in terms of contact shifts by ${\sigma}$-electron delocalization. Both contact and pseudocontact shifts contribute to the isotropic shifts in cobalt complexes. The contact shifts, which are obtained by subtracting the pseudocontact shifts from the isotropic shifts, require both ${\sigma}$-and ${\pi}$-electron delocalization from the cobalt ion. Slow ligand exchange has also allowed us to identify the species formed when bidentate ligands react with the heteropolyanions. Pyrazine forms a 1 : 1 complex, while 4,4'-bipyridyl forms both 1 : 1 and dumbbell-shaped 1 : 2 complexes.

Catalytic performance of Al-MCM-48 molecular sieves in the isopropylation of phenol with isopropyl acetate (isopropyl acetate을 이용한 페놀의 isopropylation 반응의 Al-MCM-48 분자체 촉매반응 특성)

  • Venkatachalam, Kandan;Hemalatha, Pushparaj;Peng, Mei-Mei;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.144-146
    • /
    • 2011
  • Al-MCM-48 molecular sieves (Si/Al = 25, 50, 75 and 100) were synthesized hydrothermally using cetyltrimethyl ammonium bromide as the structure directing template. The orderly arrangement of mesopores was evident from the low angle X-ray diffraction patterns and TEM images. The catalytic performance was evaluated in the vapour phase isopropylation of phenol with isopropyl acetate. Phenol conversion decreased with increase in the Si/Al ratio of the catalysts. The major reaction product was 4-isopropyl phenol (selectivity: 78%). Delocalization of phenolic oxygen electron pair over the aromatic ring promoted para-selective alkylation. Such delocalization could be aided by the hydrophilic surface of the molecular sieves. Though ester was used as the alkylating agent, phenyl isopropyl ether was not formed

  • PDF

Synthesis and Characterization of Phthalocyaninatometal (PcM, M=$Fe^{2+}$, $Co^{2+}$ Complexes with Monodenate Aromatic Isocyanide Ligands

  • 임윤묵;박하선;송수호;박찬조;유하일;이종기;양현수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.701-704
    • /
    • 1999
  • Metallophthalocyanines [PcM, Pc: phthalocyanine, M: Fe 2+ , Co 2+ ] were reacted with α-isocyanonaphthalene( α-in) and α-isocyanoanthracene (α-ia) to form monomeric complexes. The synthesis and coordination behaviour of the isocyanides as a ligand (L) are discussed. All the products were characterized by spectroscopic methods and instrumental analysis. The electrical conductivities of these complexes, which were not treated with dopant, were attributed to the metal-ligand electron delocalization in the PcML2 complexes. The complexes have an enlarged macrocycle where the π-electron back donating ability of PcM is stronger than the σ-electron coordinating ability of the isonitrile ligands. Their electrical conductivities were measured as σRT = 2.1×10 -9 ~3×10 -10 S/cm. Also thermal stability was investigated in this study.

Studies on Color Transition Mechanism of Shikonin (Shikonin의 지표약적 성질에 관한 연구)

  • 이왕규;유경수
    • YAKHAK HOEJI
    • /
    • v.24 no.3_4
    • /
    • pp.151-157
    • /
    • 1980
  • Color transition mechanism of shikonin as an acid-alkali indicator was studied. It was confirmed that the presence of phenolic hydroxy radical was essential for the color change of shikonin. But in accordance with shikonin sodium salt (blue color), which was presumed to make chelation as six membered rings. Shikonin in alkaline solution, by dissociated phenolic protons of naphthoquinone nucleous, converted to the corresponding anion and instead of disappearance tautomerization, electron delocalization occurred and an additional pair of nonbonding electrons in the anion was available for interaction with .phi. electron system of the ring with further extension of the conjugation. It was responsible for its blue color(corresponding color: orange) with needs less energy difference (${\phi}{\rarw}{\phi}^{*}$) because of conjugation extension. Shikonin sodium salt seems to have similar nuclear structure as shikonin anion.

  • PDF

Density Functional Theory Studies on the Electrophilic versus Electron Transfer Mechanisms of Aryl Vinyl Ethers

  • 김왕기;손창국;임선희;이순기;김창곤;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1177-1180
    • /
    • 1999
  • The ab initio SCF MO and density functional theory (DFT) studies are carried out on the electrophilic (1a) and electron transfer (1b) addition reactions to the vinyl double bond of aryl vinyl sulfides and ethers. In the electrophilic addition processes, a double bond shift from C3 = C4 to X = C3 occurs with occupation number (1.97) close to the normal two. Due to this shift direct conjugation between the cationic center, X = S or O, and the para electron-donor substituent becomes impossible so that the reaction energies (or log K) are correlated with σ rather than σ+. By contrast, radical cation formation leads to delocalization of the SOMO, a lone-pair πorbital on X, with four major resonance structures in which cationic charge as well as spin density is delocalized over C4 , X and C7 atoms. As a result, partial πbonds are formed over C1 -X and C3 - C4 with occupation numbers (0.82) lower than one. In two of the cannonical structures, III(Ⅹ) and III(X+), direct conjugation between the cationic center, X, and the para substituent is achieved so that a better correlation with σ+ rather than σis obtained. The SCF MO energies at the HF/3-21G* and HF/6-31G* levels lead to very much inferior Hammett correlations in the σ/ σ+ diagnostic criterion. In contrast, the ρvalues evaluated with the DFT energies can give reliable diagnostic distinction between the two addition mechanisms.

Molecular Orbital Study of Binding at the Pt(111)/${\gamma}-Al_2O_3$(111) Interface (Pt(111)/${\gamma}-Al_2O_3$(111) 계면간 결합에 관한 분자 궤도론적 연구)

  • Choe, Sang Joon;Park, Sang Moon;Park, Dong Ho;Huh, Do Sung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.264-272
    • /
    • 1996
  • Cluster models of the Υ-Al2O3(111) and the Pt(111) surfaces have been used in an atom superposition and electron delocalization molecular orbital study of interfacial bond strengths between them. The reduced extents for Al3+ are due to the ratio of oxygen to aluminum atoms. The greater the reduced extent for Al3+ is, the stronger the binding energy is to Pt atoms in a cluster. The oxygen-covered surfaces of Υ-Al2O3(111) are shown to bind more weakly to Pt atoms, while the binding to the oxygen-covered surface formed under oxidizing conditions of Pt atoms is strong. The interfacial bond of platinum-alumina may be possible by a charge-transfer mechanism from the platinum surface to the partially empty O-2p band and Al3+ dangling surface orbital.

  • PDF

Investigation of natural solution effect in electrical conductivity of PANI-CeO2 nanocomposites

  • Shafiee, Mohammad Reza Mohammad;Sattari, Ahmad;Kargar, Mahboubeh;Ghashang, Majid
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • A green biosynthesis method is described for the preparation of Polyaniline (PANI)-cerium dioxide ($CeO_2$) nanocomposites in different media via in-situ oxidative polymerization procedure. The effect of various media including use of HCl, Lemon Juice, Beverage, White Vinegar, Verjuice and Apple vinegar extracts on the particles size, morphology as well as the conductivity of $PANI-CeO_2$ nanocomposites was investigated. The electron-withdrawing feature of $CeO_2$ increases doping level of PANI and enhances electron delocalization. These cause a significantly blue shift of C = C stretching band of quinoid from $1570cm^{-1}$ to $1585cm^{-1}$. The optical properties of the pure material and polymeric nanocomposites as well as their interfacial interaction in nanocomposite structures analyzed by UV-visible spectroscopy. The DC electrical conductivity (${\sigma}$) of as-prepared HCl doped PANI and a $PANI-CeO_2$ nanocomposite measured by a four-probe method at room temperature was studied.