• 제목/요약/키워드: Electron Spectroscopy for Chemical Analysis(ESCA)

검색결과 29건 처리시간 0.023초

MOCVD법으로 제조한 $AL_2O_3$ 박막의 열처리에 의한 특성 평가 (Characterization of the heat treatment of $AL_2O_3$ thin films by MOCVD)

  • 이상화;김종국;박병옥
    • 한국결정성장학회지
    • /
    • 제7권2호
    • /
    • pp.216-223
    • /
    • 1997
  • 출발물질로 aluminum iso-propoxide ($Al(OC_3H_7)_3$, AIP)를 사용하여 화학증착법으로 Si-wafer(100)위에 알루미나 박막을 증착하였다. 증착된 박막의 조성을 알아보기 위해 ESCA를 이용하였으며, SEM을 이용하여 박막의 형상 및 두께를 평가하였다. 그리고 굴절율 및 C-V 특성은 각각 ellipsometry와 HP4192A를 사용하였다. ESCA와 SEM의 분석결과에서 상압보다는 저압에서 막이 균일하고 조성이 잘 맞는 것을 알 수 있었으며 열처리를 통해 굴절율의 변화를 볼 수 있었다. 그리고 NMOS소자에서의 C-V특성을 개선하기 위해, $Al_2O_3$와 Si사이에 $SiO_2$층을 형성하는 것이 좋음을 알 수 있었다.

  • PDF

Radiolytic Immobilization of Lipase on Poly(glycidyl methacrylate )-grafted Polyethylene Microbeads

  • Choi Seong-Ho;Lee Kwang-Pill;Kang Hee-Dong;Park Hyun Gyu
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.586-592
    • /
    • 2004
  • Poly(glycidyl methacrylate)-grafted polyethylene microbeads (POPM) presenting epoxy groups were prepared by radiation-induced graft polymerization of glycidyl methacrylate on the polyethylene microbead. The obtained POPM was characterized by IR spectroscopic, X-ray photoelectrons spectroscopy (XPS), scanning electron microscope (SEM), and thermal analyses. Furthermore, the abundance of epoxy groups on the POPM was determined by titration and elemental analysis after amination. The epoxy group content was calculated to be in the range 0.29-0.34 mmol/g when using the titration method, but in the range 0.53-0.59 mmol./g when using elemental analysis (EA) after amination. The lipase was immobilized to the epoxy groups of the POPM under various experi­mental conditions, including changes to the pH and the epoxy group content. The activity of the lipase-immobilized POPM was in the range from 160 to 500 unit/mg-min. The activity of the lipase-immobilized POPM increased upon increasing the epoxy group content. The lipase-immobilized POPM was characterized additionally by SEM, elec­tron spectroscopy for chemical analysis (ESCA), and EA.

코로나 방전처리에 의한 폴리에스테르 및 P/C 혼방직물의 복합기능화 가공(II) - 복합 기능화 가공 - (Multi-Functional Finish of Polyester and P/C blend Fabrics by Corona Discharge(II) - Multifunctional finish-)

  • Lee, Bang One;Pak, Pyong Ki;Yeo, Joo Hong;Lee, Hwa Sun
    • 한국염색가공학회지
    • /
    • 제9권3호
    • /
    • pp.1-9
    • /
    • 1997
  • Plasma techniques permit modification of the surface layers of the substrate while maintaining its bulk properties. The use of plasma treatment on textile fibers and fabrics is very limited, however, the limitations, plasma treatments have been used to modify surface properties of textiles. In this study, multifunctional finish was performed by corona discharge technique for surface functionalization. Electron spectroscopy for chemical analysis(ESCA) was used to determine the ratios of carbon, oxygen, nitrogen, and phosphor at a 20$\AA$ sampling depth. K/S value and limiting oxygen index(LOI) value were used to obtain information on the effect of the finished fabrics. The mechanism of the flame retardancy was analyzed by the thermogravimetry-and the residue number. In ESCA, relative N1s intensity increased in case of mixtrure. The flame retardancy of the polyester and polyester/cotton fabrics treated with JA-6034 and JA-6050 was found to be operative mainly in the condensed phase mechanism. The multifunctional finish was better effect for the post treated finish agent.

  • PDF

팔라디움-은합금의 반복주조시 도재와 금속간의 화학적 결합에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE CHEMICAL BOND STRENGTH AT THE INTERFACE BETWEEN PORCELAIN AND SUCCESSIVELY RECAST PALLADIUM-SILVER CERAMIC ALLOY)

  • 김태균;이선형;양재호;정헌영
    • 대한치과보철학회지
    • /
    • 제27권1호
    • /
    • pp.31-47
    • /
    • 1989
  • The purpose of this study was to evaluate the chemical bond strength of successively recast Pd-Ag ceramic alloys with porcelain and to investigate changes of quantity of trace elements at the metal-porcelain interface. Porcelain was fired as usual manner on the each successively recast specimen. Rectangular planar shear test was performed and bond strength was measured by Instron universal testing machine. Diffusion of trace elements at the each interface was observed by ESCA (Electron Spectroscopy for Chemical Analysis). The obtained results were as follows : 1. Chemical bond strength was significantly decreased after second recasting. But in case of first recasting, there was no significant decrease of bond strength statistically (p<0.05). 2. Bond strength was not significantly decreased in each generation, when fifty percents new alloy was added (p<0.05). 3. Ag, Sn and In were observed at the porcelain interface. But Pd was not observed. 4. The quantity of Ag, In ions were progressively increased at the metal-porcelain interface as the casting was repeated. Silver ion was most significantly increased.

  • PDF

목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성 (Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites)

  • 손정일;더글라스 가드너
    • 접착 및 계면
    • /
    • 제3권4호
    • /
    • pp.1-9
    • /
    • 2002
  • 본 연구의 목적은 목분과 폴리프로필렌으로 제조한 목질-고분자 복합재료의 점탄성적 성질에 미치는 결합제, 기핵제의 영향에 대해 고찰하는데 있으며, 목분과 결합제간의 esterification 반응이 목질-고분자 복합재의 기계적 성질에 미치는 영향 또는 고찰하고자 한다. 복합재는 목분 60%와 폴리프로필렌 40%를 혼합하여 제조하였으며, DMTA (Dynamic mechanical thermal analysis)를 사용하여 damping peaks (than ${\delta}$), storage modulus (E'), loss modulus (E")를 측정하였다. 또한 XPS (X-ray Photolectron Spectroscopy)를 사용하여 목분에 MAPP를 처리하기 전과 후의 상태를 고찰하였다. DMA 시험은 온도범위 $-20{\sim}100^{\circ}C$에서 여러가지 주파수 (1, 5, 10, 25 HZ) 조건과, 승온속도 $5^{\circ}C/min$으로 실시하였다. 이 시험결과를 토대로 복합재의 활성화에너지를 구하여 결합제와 기핵제가 목분과 고분자물질간 계면의 성질에 미치는 영향을 고찰하였다.

  • PDF

Characterization of Titanium Implant Anodized in Various Electrolytes

  • Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Park, Joon-Bong;Hur, Yin-Sik
    • 전기화학회지
    • /
    • 제5권2호
    • /
    • pp.43-46
    • /
    • 2002
  • Commercial titanium rod was anodized in three types of electrolytes such as 0.06 mol/L $\beta-glycerophosphate+0.3mol/L$ calcium acetate, 0.06mol/L $\beta-glycerophosphate+0.3mol/L$ sodium acetate and 0.06 mol/L $\beta-glycerophosphate+5mol/L$ calcium phosphate. The titanium oxide layer $(TiO_2)$ was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron spectroscopy chemical analysis (ESCA). Numerous micropores were observed on the titanium oxide layer by SEM. The diameter of micropores increased with the increase of electrolytic voltage. The titanium oxide layer was composed of anatase structure. The phosphorous element was detected at 130 eV binding energy, but calcium was not found in the oxide layer because of lower contents. After anodizing the oxide layer was etched in the 30g/L NaOH solution at $80^{\circ}C$ for 1hr. The surroundings of micropores were much more smoothed and rounded than before alkaline etching.

Biocompatibility of Poly(MPC-co-EHMA)/Poly(L-1actide-co-glycolide) Blends

  • Gilson Khang;Park, Myoung-Kyu;Jong M. Rhee;Lee, Sang-Jin;Lee, Hai-Bang;Yasuhiko Iwasaki;Nobuo Nakabayashi;Kazuhiko Ishihara
    • Macromolecular Research
    • /
    • 제9권2호
    • /
    • pp.107-115
    • /
    • 2001
  • Poly(L-lactide-co-glycolide)(PLGA) was blended with poly[$\omega$-methacryloyloxyethyl phospho-rylcholine-co-ethylhexylmethacrylate (PMEH)] (PLGA/PMEH) to endow with new functionality i.e., to improve the cell-, tissue- and blood-compatibility. The characteristics of surface properties were investigated by measurement of contact angle goniometer, Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and electron spectroscopy for chemical analysis (ESCA). NIH/3T3 fibroblast and bovine aortic endothelial cell were cultured on control and PLGA/PMEH surfaces for the evaluation of ceil attachment and proliferation in terms of surface functionality such as the concentration of phosphoryl-choline. Also, the behavior of platelet adhesion on PLGA/PMEH was observed in terms of the surface functionality. The contact angles on control and PLGA/PMEH surfaces decreased with increasing PMEH content from 75$^{\circ}$ to about 43$^{\circ}$. It was observed from the FTIR-ATR spectra that phosphorylcholine groups are gradually increased with increasing blended amount of MPC. The experimental P percent values from ESCA analysis were more 3.28∼7.4 times than that of the theoretical P percent for each blend films. These results clearly indicated that the MPC units were concentrated on the surface of PLGA/PMEH blend. The control and PLGA/PMEH films with 0.5 to 10.0 wt% concentration of PMEH were used to evaluate cell adhesion and growth in terms of phosphorylcholine functionality and wettability. Cell adhesion and growth on PLGA/PMEH surfaces were less active than those of control and both cell number decreased with increasing PMEH contents without the effect of surface wettability. It can be explained that the fibronectin adsorption decreased with an increase in the surface density of phosphorylcholine functional group. One can conclude the amount of the protein adsorption and the adhesion number of cells can be controlled and nonspecifically reduced by the introduction with phosphorylcholine group. Morphology of the adhered platelets on the PLGA/PMEH surface showed lower activating than control and the number of adhered platelets on the PLGA/PMEH sample decreased with increasing the phosphorylcholine contents. The amount of fibrinogen adsorbed on the PLGA/PMEH surface demonstrated that the phospholipid polar group played an important role in reducing protein adsorption on the surface. In conclusion, this surface modification technique might be effectively used PLGA film and scaffolds for controlling the adhesion and growth of cell and tissue, furthermore, blood compatibility of the PLGA was improved by blending of the MPC polymer for the application of tissue engineering fields.

  • PDF

열처리에 의한 도재용 Ni-Cr합금 표면의 변화에 관한 연구 (METAL SURFACE CHANGES BY HEAT TREATMENT OF Ni-Cr ALLOYS)

  • 김영한;이선형;양재호;정헌영
    • 대한치과보철학회지
    • /
    • 제27권2호
    • /
    • pp.219-248
    • /
    • 1989
  • The purposes of this study were to analyze the microstructural and compositional changes of metal surfaces following different conditions of preoxidizing heat treatment, to investigate the composition of metal oxides, and to evaluate the effect of preoxidation and removal of surface oxides on microstructure and diffusion profiles. The techniques of EDAX (energy-dispersive analysis of x-ray), ESCA (electron spectroscopy for chemical analysis), and EPMA (electron probe micro analysis) were used, along with SEM (scanning electron microscopy). The obtained results were as follows : 1. A surface of the specimen became rough and the amount of the metal oxides increased with increasing the heat treatment time and temperature and the partial pressure of oxygen. 2. At an air pressure of 28' vacuum, the higher the temperature and the longer the time of preoxidation, the higher Ni concentration was detected. 3. Cr concentration in the specimen heat treated with air was higher than that of with vacuum. 4. The oxides in the specimens were mainly composed of Ni and Cr oxides. On the globular growth particles, significant rises in Al concentration of Rexillium III and Ti concentration of Verabond were noted. 5. Atomic diffusion occurred at the ceramic-metal interface, furthermore the amount of the flux was increased with preoxidation heat treatment.

  • PDF

초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상 (Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool)

  • 강성기;왕덕현;김원일
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES)

  • 정극모;박남수;우이형
    • 대한치과보철학회지
    • /
    • 제30권2호
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF