• Title/Summary/Keyword: Electron Shielding

Search Result 99, Processing Time 0.024 seconds

Characterization of PMMA/MWNT Composites Fabricated by a Twin Screw Extruder (이축 압출기를 이용하여 제조된 PMMA/MWNT 복합체의 특성 분석)

  • Woo, Jong-Seok;Lee, Geon-Woong;Kye, Hyoung-San;Shin, Kyung-Chul;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • MWNTs have been widely investigated due to unique properties of such as good electrical conductivity and thermal stability in polymer composites industries. This paper established the procedure to fabricate PMMA/MWNT composites by a modular intermeshing co-rotating twin screw extruder with L/D ratio of 42. The electrical properties of PMMA/MWNT composites with different content of MWNT have been investigated. A sheet resistance percolation was observed at 4 wt% of MWNT for the melt processed composites. Sheet resistance of PMMA/MWNT composite film containing 4 wt% of MWNT was nearby $10^4{\Omega}/sq$ and this shows the possibility of potential application to EMI (Electronic Magnetic Interference) shielding materials. The characteristics of composites were analyzed by TGA, DSC, and SEM. In addition, MFI (Melt Flow Index) has been measured to analyze the rheological property.

Synthesis and Characterization of a Near-Infrared Optical Materials for Shielding Infrared Rays

  • Park Su-Yeol;Sin Seung-Rim;Sin Jong-Il;O Se-Hwa;Jeon Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2005.05a
    • /
    • pp.213-215
    • /
    • 2005
  • The metal complexes can be influenced not only by the central metal atoms and the substituent groups, but also by the native of the chelating atoms. For example, near-infrared absorbing chromophores were synthesized by the reaction of phenylenediamine derivatives with a solution of pottassium hydroxide followed by the addition of nickel(II) chloride. These dyes provide absorbing infrared light over 780-840 nm with an extinction coefficient of $2.5-6.0{\times}10^4$. By introduction of alkyl, alkoxyl, cyano, and other functional group into the parent dye, these dyes greatly improved the solubility in organic solvent. New near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting strength of the two halves of the molecule. The cyanine chromophores permit the simplest way of obtaining systems that absorb well into the near-infrared region of the spectrum. Cyanine dyes possess high extinction coefficients that initially increase with Increasing chain length. These chromophores could be useful in near-infrared optical materials.

  • PDF

Effect of Reductants and their Properties of Electric Resistivity on the Preparation of Ag coated Cu Powders by Chemical Reduction Method (화학환원법을 이용한 은 코팅 구리 분말 제조 시 환원제의 영향 및 전기비저항 특성)

  • Ahn, Jong-Gwan;Yoon, Chi-Ho;Kim, Dong-Jin;Cho, Sung-Wook;Park, Je-Shin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1097-1102
    • /
    • 2010
  • Silver coated copper powders were prepared by a chemical reduction method with controlling the deposition process variables such as the feeding rate of the silver ionic solution and concentration of the reductants at room temperature. The characteristics of the products were evaluated by scanning electron microscope (SEM), X-ray diffractometer (XRD), atomic absorption spectrophotometer (AA) and a 4 probe resistivity measurement system. The optimum condition of the preparation of Ag coated Cu powders was at 0.05 M of potassium sodium tartrate and 2 ml/min of the feeding rate of the silver ionic solution. Our method successfully produced dense, uniform, and well-dispersed Ag coated Cu powder of $2{\sim}2.5{\mu}m$ witha silver layer of 100~200 nm. Additionally, we found that thespecific resistivity of the 30 wt.% Ag coated Cu powder was similar to that of pure silver, so that the composite powder could be used as an alternative electromagnetic shielding material for silver.

Fabrication and Microstructure of Metal-Coated Carbon Nanofibers using Electroless Plating (무전해 도금을 이용한 금속 코팅된 탄소나노섬유의 제조 및 미세조직)

  • Park, Ki-Yeon;Yi, Sang-Bok;Kim, Jin-Bong;Lee, Jin-Woo;Lee, Sang-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.43-48
    • /
    • 2007
  • The absorption and the interference shielding of electromagnetic wave have been very important issues for commercial and military purposes. The stealth technique is one of the most typical applications of electromagnetic wave absorption technology. This study has started for the development of composite fillers containing dielectric and magnetic lossy materials. To improve the electromagnetic characteristics of conductive nano fillers, carbon nanofibers (CNFs) with nickel-phosphorous (Ni-P) or nickel-iron (Ni-Fe) have been fabricated by the electroless plating process. Observations by the electron microscopy (SEM/TEM) and element analyzer (EDS/ELLS) showed the uniform Ni-P and Ni-Fe coated CNFs. The compositions of the plating layers were about Ni-6wt%P and Ni-70wt%Fe, respectively. The average thicknesses of the plating layers were about $50\;{\sim}\;100\;nm$.

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Improvement of Mechanical and Corrosion Properties of Mg-Ca-Zn Alloy by Grain Refinement (Grain Refinement를 통한 Mg-Ca-Zn합금의 기계적 특성 및 부식 특성 향상)

  • Kim, Dae-Han;Choi, Jong-Min;Lim, Hyun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.418-424
    • /
    • 2017
  • Magnesium has a higher specific strength than other metals and is widely used industry wide due to its excellent vibration absorption ability and electromagnetic wave shielding property.For example, it is used for automobile parts such as car seat frames and cylinder heads, and is widely used in electronic products such as notebook cases and mobile phone cases. In addition, it is in the spotlight as a bone-implant material used to assist in the treatment of damaged bones when the bones are cracked or broken. Currently, Ti alloy, stainless steel and Co-Cr-Mo alloy are used as the implant material, and the Mg alloy remains in research stage. The current problem with bone implant implants is that the patients must undergo reoperation to remove the implants after joint surgery. Magnesium, however, can achieve sufficient strength compared to current materials. In addition, since it is self-decomposed after the recovery, reoperation is not necessary. In this paper, Mg alloys were designed by adding harmless Ca and Zn to the human body. In order to improve the strength and corrosion resistance, the final alloy was designed by adding a small amount of Sr as a grain refiner. The radioactive elements of Sr are harmful to the human body, but other naturally occurring Sr elements are harmless. Microstructure analysis of the alloys was performed by optical microscopy and scanning electron microscopy. The mechanical properties and corrosion characteristics were evaluated by tensile test, potentiodynamic test and immersion test.

Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials (TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성)

  • Kim, Y.U.;Cho, J.Y.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

Parotid Gland Sparing Radiotherapy Technique Using 3-D Conformal Radiotherapy for Nasopharyngeal CarcinomB (비인강암에서 방사선 구강 건조증 발생 감소를 위한 3차원 입체조형치료)

  • Lim Jihoon;Kim Gwi Eon;Keum Ki Chang;Suh Chang Ok;Lee Sang-wook;Park Hee Chul;Cho Jae Ho;Lee Sang Hoon;Chang Sei Kyung;Loh Juhn Kyu
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • Purpose : Although using the high energy Photon beam with conventional Parallel-opposed beams radiotherapy for nasopharyngeal carcinoma, radiation-induced xerostomia is a troublesome problem for patients. We conducted this study to explore a new parotid gland sparing technique in 3-D conformal radiotherapy (3-D CRT) in an effort to prevent the radiation-induced xerostomia. Materials and Methods : We peformed three different planning for four clinically node-negative nasopharyngeal cancer patients with different location of tumor(intracranial extension, nasal cavity extension, oropharyngeal extension, parapharyngeal extension), and intercompared the plans. Total prescription dose was 70.2 Gy to the isocenter. For plan-A, 2-D parallel opposing fields, a conventional radiotherapy technique, were employed. For plan-B, 2-D parallel opposing fields were used up until 54 Gy and afterwards 3-D non-coplanar beams were used. For plan-C, the new technique, 54 Gy was delivered by 3-D conformal 3-port beams (AP and both lateral ports with wedge compensator; shielding both superficial lobes of parotid glands at the AP beam using BEV) from the beginning of the treatment and early spinal cord block (at 36 Gy) was peformed. And bilateral posterior necks were treated with electron after 36 Gy. After 54 Gy, non-coplanar beams were used for cone-down plan. We intercompared dose statistics (Dmax, Dmin, Dmean, D95, DO5, V95, VOS, Volume receiving 46 Gy) and dose volume histograms (DVH) of tumor and normal tissues and NTCP values of parotid glands for the above three plans. Results : For all patients, the new technique (plan-C) was comparable or superior to the other plans in target volume isodose distribution and dose statistics and it has more homogenous target volume coverage. The new technique was most superior to the other plans in parotid glands sparing (volume receiving 46 Gy: 100, 98, 69$\%$ for each plan-A, B and C). And it showed the lowest NTCP value of parotid glands in all patients (range of NTCP; 96$\~$100$\%$, 79$\~$99$\%$, 51$\~$72$\%$ for each plan-A, B and C). Conclusion : We conclude that the new technique employing 3-D conformal radiotherapy at the beginning of radiotherapy and cone down using non-coplanar beams with early spinal cord block is highly recommended to spare parotid glands for node-negative nasopharygeal cancer patients.

  • PDF