• Title/Summary/Keyword: Electron Probe

Search Result 731, Processing Time 0.034 seconds

Geochemical Origins and Occurrences of Natural Radioactive Materials in Borehole Groundwater in the Goesan Area (괴산지역 시추공 지하수의 자연방사성물질 산출특성과 지화학적 기원)

  • Kim, Moon Su;Yang, Jae Ha;Jeong, Chan Ho;Kim, Hyun Koo;Kim, Dong Wook;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.535-550
    • /
    • 2014
  • The origins and varieties of natural radioactive materials, including uranium and radon-222, were examined in a drilled borehole extending to a depth of 120 m below the surface in the Goesan area. In addition to core samples, eight groundwater samples were collected at different depths, using a double packer system and bailer, and their geochemical characteristics were determined. Most of the rock samples from the drilled core consisted of granite porphyry, with sedimentary rocks (slate, carbonate, or lime-silicates) and pegmatite occurring in certain sections. The pH of samples varied from 7.8 to 8.4, and the groundwater was of a Na-$HCO_3$type. Uranium and thorium concentrations in the core were < 0.2-14.8 ppm and 0.56-45.0 ppm, respectively. Observations by microscope and an electron probe microanalyzer (EPMA) showed that the mineral containing the natural radioactive materials was monazite contained in biotite crystals. The uranium, which substituted for major elements in the monazite, appeared to have dissolved and been released into the groundwater in a shear zone. Concentrations of Radon-222 in the borehole showed no close relationship with levels of uranium. The isotopes of noble gases, such as helium and neon, would be useful for analyzing the origins and characteristics of the natural radioactive materials.

Formation and Characteristics of the Fluorocarbonated SiOF Film by $O_2$/FTES-Helicon Plasma CVD Method

  • Kyoung-Suk Oh;Min-Sung Kang;Chi-Kyu Choi;Seok-Min Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.77-77
    • /
    • 1998
  • Present silicon dioxide (SiOz) 떠m as intennetal dielectridIMD) layers will result in high parasitic c capacitance and crosstalk interference in 비gh density devices. Low dielectric materials such as f f1uorina뼈 silicon oxide(SiOF) and f1uoropolymer IMD layers have been tried to s이ve this problem. I In the SiOF ftlm, as fluorine concentration increases the dielectric constant of t뼈 film decreases but i it becomes unstable and wa않r absorptivity increases. The dielectric constant above 3.0 is obtain어 i in these ftlms. Fluoropolymers such as polyte$\sigma$따luoroethylene(PTFE) are known as low dielectric c constant (>2.0) materials. However, their $\alpha$)Or thermal stability and low adhesive fa$\pi$e have h hindered 야1리ru뚱 as IMD ma따"ials. 1 The concept of a plasma processing a찌Jaratus with 비gh density plasma at low pressure has r received much attention for deposition because films made in these plasma reactors have many a advantages such as go여 film quality and gap filling profile. High ion flux with low ion energy in m the high density plasma make the low contamination and go어 $\sigma$'Oss피lked ftlm. Especially the h helicon plasma reactor have attractive features for ftlm deposition 야~au똥 of i앙 high density plasma p production compared with other conventional type plasma soun:es. I In this pa야Jr, we present the results on the low dielectric constant fluorocarbonated-SiOF film d밑JOsited on p-Si(loo) 5 inch silicon substrates with 00% of 0dFTES gas mixture and 20% of Ar g gas in a helicon plasma reactor. High density 띠asma is generated in the conventional helicon p plasma soun:e with Nagoya type ill antenna, 5-15 MHz and 1 kW RF power, 700 Gauss of m magnetic field, and 1.5 mTorr of pressure. The electron density and temperature of the 0dFTES d discharge are measUI벼 by Langmuir probe. The relative density of radicals are measured by optic허 e emission spe따'Oscopy(OES). Chemical bonding structure 3I피 atomic concentration 따'C characterized u using fourier transform infrared(FTIR) s야3띠"Oscopy and X -ray photonelectron spl:’따'Oscopy (XPS). D Dielectric constant is measured using a metal insulator semiconductor (MIS;AVO.4 $\mu$ m thick f fIlmlp-SD s$\sigma$ucture. A chemical stoichiome$\sigma$y of 야Ie fluorocarbina$textsc{k}$영-SiOF film 따~si야영 at room temperature, which t the flow rate of Oz and FTES gas is Isccm and 6sccm, res야~tvely, is form려 야Ie SiouFo.36Co.14. A d dielec$\sigma$ic constant of this fIlm is 2.8, but the s$\alpha$'!Cimen at annealed 5OOt: is obtain려 3.24, and the s stepcoverage in the 0.4 $\mu$ m and 0.5 $\mu$ m pattern 킹'C above 92% and 91% without void, res야~tively. res야~tively.

  • PDF

Adhesion reliability of flexible copper clad laminate under constant temperature and humidity condition by thickness of Ni/Cr seed layer (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Yoon, Jae-Hyun;Choi, Don-Hyun;Kim, Yong-Il;Jung, Seong-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.75-75
    • /
    • 2009
  • 연성회로기판은 일반적으로 절연체를 이루는 폴리이미드와 전도체를 이루는 구리로 구성되어 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 기계적 특성, 공정성 등의 장점으로 인해 연성회로기판의 절연체로서 제안되었지만 전도체를 이루는 구리와의 접합 특성이 우수하지 않기 때문에 많은 연구가 현재까지 진행되고 있고, 그 결과 연성회로기판의 접합 특성에 많은 개선이 이루어짐과 동시에 다양한 공정 방법이 제안되고 있다. 하지만 고온다습한 환경에서 사용될 경우 폴리이미드의 높은 흡습성과, 구리와 seed layer의 산화 문제로 인해 접합 특성이 저하된다는 단점 또한 가지고 있다. 따라서 본 연구를 통해 고온다습한 조건하에서 seed layer가 80Ni/20Cr 합금으로 구성된 연성회로기판의 seed layer의 두께와 시효시간으로 인해 발생하는 접합 신뢰성의 차이를 관찰하였다. 본 연구에서는 두께 $25{\mu}m$의 폴리이미드 위에 각각 100, 200, $300{\AA}$ 두께의 80Ni/20Cr의 합금 조성을 가지는 seed layer를 스퍼터링 공정을 통해 형성한 후 전해도금법을 이용하여 $8{\mu}m$ 두께의 구리 전도층을 형성하였다. 접합 특성 평가를 위해 ICP 규격에 따라 전도층 패턴을 폭 3.2mm, 길이 230mm로 시편을 제작하여 50.8mm/min의 이송 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 또한 $85^{\circ}C$/85% 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효 처리 후 같은 방법으로 연성회로기판의 접합 특성을 평가하였다. 파면의 형상과 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 파면의 잔여물 분석을 위해 EPMA (Energy probe microanalysis)를 사용하였고 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 분석하였다.

  • PDF

Characteristics of CuGa precursor deposited by sputter as Electron beam irradiation (Sputtering 방법을 이용하여 증착된 CuGa precursor의 전자빔조사에 따른 특성분석)

  • Park, Insun;Kim, Chaewoong;Jung, Seungchul;Kim, Dongjin;Kwon, Hyuk;Kim, Jinhyeok;Jung, Chae Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.52.1-52.1
    • /
    • 2011
  • 최근에 에너지 자원의 고갈이 다가오는 상황에서 태양전지 분야가 주목받고 있으며 이에 대한 시장이 급격하게 확대되고 있다. 그러나 현재의 태양전지는 주를 이루고있는 실리콘태양전지의 경우 원재료 수급이 불안정하여 가격 변동이 심하다. 따라서 이를 대체할 2세대 태양전지인 박막형 태양전지의 연구가 활발히 이루어지고 있다. 박막형 태양전지 중에서도 주목받고 있는 것은 Cu(In,Ga)$Se_2$(CIGS)박막 태양전지이다. CIGS는 Ga의 농도에 따라 1.02~1.68eV의 다양한 에너지 밴드갭을 갖는 직접천이형 반도체 물질이다. 또한 $1{\times}10^5cm^{-1}$의 높은 광흡수계수를 가지고 있으며, $450{\sim}590^{\circ}C$의 고온공정에서도 매우 안정하여 열화현상이 거의 보이지 않아 박막형 광흡수층 재료로서 적합하다. 흡수층을 제조하는 방법은 여러 가지가 있지만, 본 연구에서는 균일성이 뛰어나고 원료사용효율이 높은 sputtering 방법을 사용하였다. 그리고 결정화하기위해서 유독기체를 사용하는 셀.렌.화. (selenization) 방법 대신 전자빔을 조사하는 방법을 채택하였다. sputtering을 통한 CIGS precursor을 제조하기위해 2~3개의 화합물target을 사용하는데, 대표적인 방법으로 동시에 sputtering하는 co-sputtering 방법과 각각의 단일 층을 쌓아 제조하는 stack형으로 분류된다. 본 연구는 CIGS precursor를 제조하기 앞서 CuGa 단일 층만을 제조하여 공정조건에 따른 박막을 제조하였다. 제조된 CuGa 단일층은 전자빔 처리에 따른 영향을 알아보기 위해 전자빔의 세기와 공정시간을 달리하여 특성을 알아보았다. 실험에서는 Cu:75wt%,Ga:25wt% 조성의 target을 사용하여 공정 압력을 각각 10~1mTorr로 변화시키며 실험을 실시하였으며 공정 power는 50W, 70W, 100W로 변화 시키며 실험을 실시하였다. 이때 실험의 초기진공은 turbo-molecular pump를 이용하여 $1{\times}10^{-6}torr$ 이하로 하였으며, Target과 기판사이의 거리는 모두 같은 조건으로 고정하여 실험을 실시하였다. 박막의 균일성을 증가시키기 위하여 5 rpm의 속도로 기판을 회전하였으며 기판 온도는 가열하지 않고 상온에서 전구체를 증착하였다. 그 후 전자빔의 세기를 고정 시킨 후 전자빔 조사 시간을 조절하여 전자빔 조사 전후의 특성을 각각 분석하였다. 전기적특성은 Hall effect, 4-point probe, 구조적 특성은 SEM,EDS, XRD, XRF 를 이용하여 분석하였다.

  • PDF

A study on the fabrication of $Pb(Fe^{0.5},Nb^{0.5}O_3$ thin films by a Co-sputtering technique and their characteristics properties (동시 스퍼터링법에 의한$Pb(Fe^{0.5},Nb^{0.5}O_3$박막의 제조 및 특성 평가에 대한 연구)

  • 이상욱;신동석;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • $Pb(Fe_{0.5}Nb_{0.5}O_3(PFN)$ thin films were prepared by rf magnetron co-sputtering method on $SiO_2/Si$, ITO/glass, and $Pt/Ti/SiO_2/Si$ substrates and post-annealed at the $N_2$ atmosphere by RTA(rapid thermal annerling). The degree of crystallinity of PFN films was identified on various substrates. Electrical properties of PFN films was characterized for $Pt/PFN/Pt/Ti/SiO_2/Si$ structure. The composition of PFN films was estimated by EPMA (electron probe micro analysis). PFN films would be crystallized better to perovskite phase on ITO/glass substrate than $SiO_2/Si$ substrate. This may be induced by the deformation of Pb deficient pyrochlore phase due to Pb diffusion into $SiO_2/Si$ substrate. PFN films on $Pt/Ti/SiO_2/Si$ substrate. PFN films with 5-10% Pb excess were crystallized to perovskite phase from $500^{\circ}C$ temperature. In summary, we show that Pb composition and annealing temperature were critically influenced on crystallinity to perovskite phase. When PFN film with 17% Pb excess was annealed at $600^{\circ}C$ at the $N_2$ atmosphere for 300kV/cm and 88. Its remnant polarization coercive field $2.0 MC/cm^2$ and 144kV/cm, respectively.

  • PDF

A Study of the Photoluminescence of ZnO Thin Films Deposited by Radical Beam Assisted Molecular Beam Epitaxy (라디칼 빔 보조 분자선 증착법 (Radical Beam Assisted Molecular Beam Epitaxy) 법에 의해 성장된 ZnO 박막의 발광 특성에 관한 연구)

  • Suh, Hyo-Won;Byun, Dong-jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.347-351
    • /
    • 2003
  • II-Ⅵ ZnO compound semiconductor thin films were grown on $\alpha$-Al$_2$O$_3$(0001) single crystal substrate by radical beam assisted molecular beam epitaxy and the optical properties were investigated. Zn(6N) was evaporated using Knudsen cell and O radical was assisted at the partial pressure of 1$\times$10$^{4}$ Torr and radical beam source of 250-450 W RF power. In $\theta$-2$\theta$ x-ray diffraction analysis, ZnO thin film with 500 nm thickness showed only ZnO(0002)and ZnO(0004) peaks is believed to be well grown along c-axis orientation. Photoluminescence (PL) measurement using He-Cd ($\lambda$=325 nm) laser is obtained in the temperature range of 9 K-300 K. At 9 K and 300 K, only near band edge (NBE) is observed and the FWHM's of PL peak of the ZnO deposited at 450 RF power are 45 meV and 145 meV respectively. From no observation of any weak deep level peak even at room temperature PL, the ZnO grains are regarded to contain very low defect density and impurity to cause the deep-level defects. The peak position of free exciton showed slightly red-shift as temperature was increased, and from this result the binding energy of free exciton can be experimentally determined as much as $58\pm$0.5 meV, which is very closed to that of ZnO bulk. By van der Pauw 4-point probe measurement, the grown ZnO is proved to be n-type with the electron concentration($n_{e}$ ) $1.69$\times$10^{18}$$cm^3$, mobility($\mu$) $-12.3\textrm{cm}^2$/Vㆍs, and resistivity($\rho$) 0.30 $\Omega$$\cdot$cm.

A Comparative Study on the Metallurgical Characteristics of the Iron Knife Using Traditional Iron-Making Method (전통 제철법을 적용하여 제작한 철제 칼의 금속학적 특성에 관한 비교 연구)

  • Cho, Sung Mo;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.433-442
    • /
    • 2018
  • In this study, metal properties were compared by preparingthree iron knives from steel ingots produced via traditional iron-making, and ingot which jointed the steel of modern times. Metal microscope and SEM-EDS analysis revealed fine ferrite and pearlite structures of the hypo-eutectoid steel of Fe-C alloys. All samples also exhibited martensite on the blade of the knife. By Vicker's hardness analysis, the hardness of the sand iron knife (K1) was 533.38 HV, sand iron-nickel steel knife (K3) was 514.8 HV, and sand iron-carbon steel knife (K2) was 477.02 HV. The mass reduction due to wear was 0.058% for K1, 0.059% for K3, and 0.144% for K2. EPMA(Electron probe micro-analyzer) analysis of the surface pattern of the specimens confirmed that the patterns were exposed due to differences in the content of C or the chemical composition. Additional research on heat treatment processes is needed to increase the abrasion resistance of blades. Traditional steel ingots could produce high-quality steel if combined with nickel steel.

The Characterization of Spherical Particles in S/G Sludge (S/G 슬러지 중 구형입자의 특성측정)

  • Pyo Hyung-Yeal;Park Yang-Soon;Park Sun-Dal;Park Yong-Joon;Park Kyoung-Kyun
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.129-136
    • /
    • 2005
  • There should not be ion exchange resin particles in S/G sludge. The suspicious spherical resin particles observed in S/G sludge sample were characterized for particle size distribution under optical microscope using the micro-technique, for element analysis by the electron probe micro analysis (EPMA), and for molecular identification by the IR spectroscopy The particle sizes are distributed from 1 to 200 ${\mu}m$ for the sludge, while 40 to 500 ${\mu}m$ for the spherical resin particles. The results of the elemental analysis showed different major impurities: Si, Al, Mn, Cr, Ni, Zn and Ti for the sludge particles, while Si, Cu, Zn for the spherical resin particles. However, both particles contain Fe as a matrix of hematite ($Fe_{3}O_4$). IR spectrum of the spherical particles was quite different from that of ion exchange resins used in S/G system. These results indicate that the spherical particles are not related to ion exchange resin particles and formed by the process of the sludge formation.

  • PDF

Occurrence and Geochemistry of Argyrodite, a Germanium-Bearing Mineral(Ag8GeS6), from the Weolyu Ag-Au Hydrothermal Vein Deposits (월류(月留) 은(銀)-금(金) 열수광상(熱水鑛床)에서 산출된 함(含) Ge 광물(鑛物)인 Argyrodite의 산상(産狀)과 지구화학(地球化學))

  • So, Chil-Sup;Yun, Seong-Taek;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.117-127
    • /
    • 1993
  • Ag-Au vein ores from the Weolyu mine, Youngdong district, contain significant germanium (up to 145g/t, average 34.9g/t), in the form of argyrodite ($Ag_8GeS_6$). Mineral chemistries of argyrodite and its associated minerals were determined by electron probe microanalysis. Twenty eight elements in thirteen ore samples were analyzed using an ICP mass spectrometer. Argyrodite occurs in the paragenetically later mineral assemblage consisting of carbonates+quartz+native silver+argentite+Ag-sulfosalts, indicating that the germanium mineralization represents the culmination of a complex mineral sequence which includes early gold and late silver deposition. The mean formula of the argyrodite is $Ag_{7.90}\;(Ge_{0.76}Sn_{0.04})S_6$, with minor amounts of Cu, Fe, Sb, As, Sn, and Zn. The Weolyu argyrodite shows systematic substitutions of Ag by Cu, and of Ge by Sb. Chemical analyses of vein ores indicate that metals were precipitated in the order of $Fe{\rightarrow}Pb$, $Zn{\rightarrow}Cu{\rightarrow}Ag$, Sb, As, Ge. Germanium has a strong geochemical affmity with As and Sb, and Cu, Pb, Zn, Mo, and Sr show weak positive correlations with Ge. Germanium deposition at Weolyu was mainly a result of cooling of hydrothermal fluids (down to $175^{\circ}C{\sim}210^{\circ}C$, due to increasing involvement of cooler meteoric waters in the epithermal system.

  • PDF

Investigation of the La1-x(Ca or Sr)xCrO3x=0 and 0.25) Interconnect Materials for High Temperature Electrolysis of Steam (고온수증기전기분해용 La1-x(Ca or Sr)xCrO3(x=0 and 0.25) 연결재 재료 연구)

  • Jeong, So-Ra;Kang, Kyoung-Soo;Park, Chu-Sik;Lee, Yong-Taek;Bae, Ki-Kwang;Kim, Chang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1135-1141
    • /
    • 2008
  • The $La_{1-x}(Ca\;or\;Sr)xCrO_3$(x=0 and 0.25) interconnect materials for high temperature electrolysis of steam were investigated in views of sinterability and electrical conductivity. $LaCrO_3$, $La_{0.75}Ca_{0.25}CrO_3$ (LCC), and $La_{0.75}Sr_{0.25}CrO_3$ (LSC) powders were synthesized by coprecipitation method. Crystal structure was confirmed by X-ray diffraction (XRD). The sintering characteristics were analyzed by relative density and scanning electron microscopy. The electrical conductivity was measured by a DC four probe method. From the analyses of relative densities, it was found that the doped $LaCrO_3$ showed better sinterability than $LaCrO_3$ and the those sinterability increased with decrease of those particle sizes. The XRD results at different sintering temperatures for LCC and LSC revealed that the sinterability is closely related to the second phase transformation, that is, the second phase melting above $1,300^{\circ}C$ for LCC and $1,400^{\circ}C$ for LSC significantly promotes the sinterability. In case of electrical conductivities of LCC and LSC, which had a similar relative density, LCC showed better electrical conductivity than LSC.