• Title/Summary/Keyword: Electron Heating

Search Result 384, Processing Time 0.028 seconds

Effects of Cooking Method and Temperature on the Lipid Oxidation of Electron-Beam Irradiated Hanwoo Steak. (가열방법 및 온도가 전자선 조사한 한우 steak의 지질산화에 미치는 영향)

  • Park T. S.;Shin T. S.;Lee J. I.;Park G. B.
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.840-846
    • /
    • 2005
  • This study was carried out to investigate the effect of electron beam irradiation and cooking temperature on physico-chemical characteristics and lipid oxidation of beef. A total of six beef carcasses ($280\∼300 kg$) that were quality grade $1^{+}$(marbling score No.7, meat color No.4, maturity No.1, texture No.1) was purchased at the commercial slaughter house. The carcasses were transported and washed using high pressure water, and pasteulized with $ 50\% $ ethyl alcohol in the laboratory. After the carcasses were deboned and trimmed, loin and round were taken out to make steak (1.5cm thickness) or ground beef respectively. Samples were wrap or vacuum packaged and irradiated with 0, 3, 4.5, 6 and 7.5 kGy using electron-beam accelerator at Samsung Heavy Industries Ltd. Co. (in Taejun). Irradiated samples were cooked with different methods(electronic pan and gas oven) and temperatures ($ 60^{\circ}C, 70^{\circ}C and 80^{\circ}C$) and used to measure fatty acid composition, TBARS, cholesterol oxide products and panel test scores. The content of saturated fatty acids increased by increasing heating temperature in oven boiling steak (OBS) and pan boiling steak (PBS), and there was no difference by electron-beam irradiation. Both irradiated and non-irradiated treatment were high as the heating temperature increased in TBARS by heating temperature in PBS (p < 0.05) and the amount of Malonaldehyde (MA), standard of fat deterioration, was increased in OBS (p < 0.05). Non-irradiated and 3, 6 kGy treatment produced about 2 fold amount of MA at $ 60^{\circ}C $ compared with $ 80^{\circ}C $. In comparison with PBS, OBS produced much amount of MA and a bit different from non-irradiated treatment but did not show no tendency. As irradiation levels and heating temperature increased, the amount of cholesterol oxides products was increased and also pan-heating method, direct heating method, significantly increased the degree of oxidation compared with oven-heating method, indirect heating method (p < 0.05).

On the silicon nitride film formation and characteristic study by chemical vapor deposition method using electron cyclotron resonance plasma (전자 싸이클로트론 공명 플라즈마 화학 증착법에 의한 실리콘 질화막 형성 및 특성 연구)

  • 김용진;김정형;송선규;장홍영
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.6
    • /
    • pp.287-292
    • /
    • 1992
  • Silicon nitride thin film (SiNx) was deposited onto the 3inch silicon wafer using an electron cyclotron resonance (ECR) plasma apparatus. The thin films which were deposited by changing the SiH4N2 gas flow rate ratio at 1.5mTorr without substrate heating were analyzed through the x-ray photo spectroscopy (XPS) and ellipsometer measurements, etc. Silicon nitride thin films prepared by the electron cyclotron resonance plasma chemical vapor deposition method at low substrate temperature (<10$0^{\circ}C$) exhibited excellent physical and electrical properties. The very uniform and good quality silicon nitride thin films were obtained. The characteristics of electron cyclotron resonance plasma were inferred from the analyzed results of the deposited films.

  • PDF

A Two-dimensional Steady State Simulation Study on the Radio Frequency Inductively Coupled Argon Plasma

  • Lee, Ho-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.246-252
    • /
    • 2002
  • Two-dimensional steady state simulations of planar type radio frequency inductively coupled plasma (RFICP) have been performed. The characteristics of RFICP were investigated in terms of power transfer efficiency, equivalent circuit analysis, spatial distribution of plasma density and electron temperature. Plasma density and electron temperature were determined from the equations of ambipolar diffusion and energy conservation. Joule heating, ionization, excitation and elastic collision loss were included as the source terms of the electron energy equation. The electromagnetic field was calculated from the vector potential formulation of ampere's law. The peak electron temperature decreases from about 4eV to 2eV as pressure increases from 5 mTorr to 100 mTorr. The peak density increases with increasing pressure. Electron temperatures at the center of the chamber are almost independent of input power and electron densities linearly increase with power level. The results agree well with theoretical analysis and experimental results. A single turn, edge feeding antenna configuration shows better density uniformity than a four-turn antenna system at relatively low pressure conditions. The thickness of the dielectric window should be minimized to reduce power loss. The equivalent resistance of the system increases with both power and pressure, which reflects the improvement of power transfer efficiency.

Effect of Electron Irradiation on the Properties of GZO Thin Film and its Gas Sensor Application (전자빔 표면 조사에 따른 GZO 박막의 물성과 가스센서 응용 연구)

  • Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.140-143
    • /
    • 2011
  • In this work, Ga doped ZnO (GZO) films were prepared by radio frequency (RF) magnetron sputtering without intentional substrate heating on glass substrate and then the effect of the intense electron irradiation on structural and electrical properties and the NOx gas sensitivity were investigated. Although as deposited GZO films showed a diffraction peak for ZnO (002) in the XRD pattern, GZO films that electron irradiated at electron energy of 900 eV showed the higher intense diffraction peaks than that of the as deposited GZO films. The electrical property of the films are also influenced with electron's energy. As deposited GZO films showed the three times higher resistivity than that of the films irradiated at 900 eV In addition, the sensitivity for NOx gas is also increased with electron irradiation energy and the film sensor showed the proportionally increased gas sensitivity with NOx concentration. This approach is promising in gaining improvement in the performance of thin film gas sensors used for the detection of hazard gas phase.

Electrical Resistivity and NTC/PTC Transition Point of a Nitrogen-Doped SiC Igniter, and Their Correlation to Electrical Heating Properties

  • Jeon, Young-Sam;Shin, Hyun-Ho;Yoo, Dong-Joo;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.124-129
    • /
    • 2012
  • An M-shaped SiC gas igniter was fabricated by a reaction sintering followed by nitrogen doping. The igniter showed both resistivity at room temperature and NTC to PTC transition temperature values that were lower than those of commercial igniters. It was deduced that the doped nitrogen reduces the electrical resistivity at room temperature, while, at high temperature, the doped nitrogen and a trace of $Si_3N_4$ phase work as scattering centers against electron transfer, resulting in a lowered NTC-to-PTC transition point (below $650^{\circ}C$). Such characteristics were correlated to the fast heating speed (as compared to the commercial models) and to the prevention of the high temperature overshooting of the nitrogen-doped SiC igniter.

Swarm Satellite Observations of the 21 August 2017 Solar Eclipse

  • Hussien, Fayrouz;Ghamry, Essam;Fathy, Adel;Mahrous, Salah
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.29-34
    • /
    • 2020
  • On 21 August 2017, during 16:49 UT and 20:02 UT period, a total solar eclipse started. The totality shadow occurred over the United States in time between ~17:15 UT and ~18:47 UT. When the solar radiation is blocked by the moon, observations of the ionospheric parameters will be important in the space weather community. Fortunately, during this eclipse, two Swarm satellites (A and C) flied at about 445 km through lunar penumbra at local noon of United States in the upper ionosphere. In this work, we investigate the effect of the solar eclipse on electron density, slant total electron content (STEC) and electron temperature using data from Swarm mission over United States. We use calibrated measurements of plasma density and electron temperature. Our results indicate that: (1) the electron density and STEC have a significant depletion associated with the eclipse; which could be due to dominance of dissociative recombination over photoionization caused by the reduction of ionizing extreme ultraviolet (EUV) radiation during the eclipse time (2) the electron temperature decreases, compared with a reference day, by up to ~150 K; which could be due to the decrease in photoelectron heating from reduced photoionization.

A Study on Emission Characteristics of Ar Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ar 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.611-615
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, Electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. Therefore, the electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an argon discharge for pressure from 10 [mTorr] and input RF power 100 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

Corrosion Behavior of Boiler Tube under Circulation Water Conditions in District Heating System (지역난방 시스템의 순환수에 따른 보일러 튜브의 부식 특성)

  • Hong, Minki;Cho, Jeongmin;Song, Min Ji;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.287-291
    • /
    • 2018
  • In this study, corrosion behavior of a SA178-A alloy used in the boiler tube of a district heating system was investigated in different environments where it was exposed to pure water, district heating (DH) water, and filtered district heating (FDH) water. After the corrosion test, the surface morphology was examined for observation of the number of pitting sites and pitting area fraction, using a scanning electron microscope. The DH water and FDH water conditions resulted in a lower corrosion potential and pitting potential, and revealed a significantly higher corrosion rate than the pure water condition. The pitting sites in the DH water (pH 9.6) were approximately eighteen times larger than those in the pure water (pH 9.6). Compared to the DH water, the corrosion potential became more noble in the FDH water condition, where iron ions were reduced through filtration. However, the corrosion rate increased in the FDH water due to an increased concentration of chloride ions, which deteriorated the stability of passive film.

The effect of oxidation heat treatment on porcelain to metal bond strength (도재용착주조관용 비귀금속 합금의 사전 열처리가 도재-금속의 결합 강도에 미치는 효과)

  • Kim, C.Y.;Nam, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.43-46
    • /
    • 1997
  • The interfacial bond strength and microstructural analysis of pre-heat treated porcelain-fused-metal (PFM) were investigated using a mechanical three-point bending tester and scanning electron microscope(SEM). Four kinds of heat treated samples were prepared as follows; A: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, hold 3min under vacuum, B: heating $1200^{\circ}F\rightarrow1600^{\circ}F$ holding 1min, reheating $\rightarrow1850^{\circ}F$ under vacuum condition, C: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 3min in the air, repeat same heat treatment process under vacuum condition, D: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 1min in the air. The three-point bending test results shows that the interfacial bond strength of specimen B and C were higher than that of A and B. The SEM study reveals that Specimen C shows the highest surface density.

  • PDF