• Title/Summary/Keyword: Electron Beam Welding

Search Result 106, Processing Time 0.024 seconds

A Study on the Electrom Beam Weldability of 9%Ni Steel (I) - Penetration and Electron Beam Characteristics - (9%Ni 강의 전자빔 용접성에 관한 연구 (I) - 전자빔 특성과 용입 -)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 1997
  • This study was performed to evaluate basic characteristics of electron beam welding process for a 9% Ni steel plate. The principal welding process parameters, such as working distance, accelerating voltage, beam current and welding speed were investigated. The AB (Arata Beam) test method was also applied to characterize beam size and energy density of the electron beam welding process. The electron beam size was found to decrease with the increase of accelerating voltage and the decrease of working distance. So, in case of high voltage (150kV), spot size and energy density of electron beam were revealed to be 0.9mm and $6.5\times10^5W/\textrm{cm}^2$ respectively. The accelerating voltage among the welding parameters was found to be the most important factor governing the penetration depth. When the accelerating voltage of electron beam was low ($\leq$90kV), beam current and welding speed did not affect on the penetration depth significantly. However, in case of high voltage ($\geq$120kV), the depth of penetration increased very sensitively with the increase of beam current and the decrease of welding speed.

  • PDF

Investigations on electron beam weldability of AlZnMgCu0.5 alloys (AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구)

  • 배석천
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

Electron beam 용접전원 system의 제어기술

  • 고상근;정기형;김상호
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.29-40
    • /
    • 1996
  • Electron beam 용접은 전자총에서 발생된 electron beam을 렌즈로 집속시켜 고 에너지의 열원을 얻는 것을 기본 원리로 하고 있다. Electron beam은 렌즈에 의해 매우 작게 집속(0.1 - 1mm.PHI.)시켜 높은 에너지밀도로 만들 수 있으므로 용접을 매우 깊게(수십 - 수백 mm) 할 수 있다. 이러한 용접 특성은 모재의 열변형을 최소로 하여 용접 부위가 원래의 성질을 잃어버리는 것을 최소화한다. 그러나, deep welding 의 경우 입력 파워 밀도가 너무 큰 관계로 계면 부위가 기계적 충격에 약하다는 단점 을 갖고 있다. Electron beam 용접은 서로 다른 금속을 filler material 없이 용접할 수 있으며 복잡한 구조의 용접이 가능하다. 또한 대부분의 electron beam 용접은 진공 중에서 이루어지기 때문에 공기의 영향을 받지 않는다는(산화 방식) 특성을 갖고 있다. 즉, 공기와의 접촉이 적기 때문에 산화가 방지되고 용접 순도가 매우 높다는 장점을 갖고 있다. 이는 반면 장치가 거대해지고 비싸다는 단점으로 작용한다. 1980년대 부터 이러한 단점의 극복을 위해서 대기중에서의 electron beam 용접에 관한 연구가 수행 되어 실용화 단계에 이루고 있다. 최근 전자, computer기술의 발달로 electron beam 출력을 더욱 더 정밀하게 조절할 수 있고, computer와 sensor의 결합으로 자동용접 위치 제어와 NC(Numerical Control) 작업대의 설치로 완전 자동화 용접 공정이 가능 하다. 그 결과 높은 용접 속도를 얻을 수 있으며 무인 생산 체계에로의 응용이 가능 하다.

  • PDF

Structural Design on the Vacuum Chamber of Electron Beam Welding System (전자빔 용접기 진공 작업실의 구조설계)

  • Lee, Young-Sin;Ryu, Chung-Hyun;Seo, Jung;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1998
  • The electron beam welding system has the advantages of the high power density, narrow welding section, and small thermal distortion of a workpiece. Recently, the electron beam welding system is widely used to the airplane engineering, nuclear power plant, and automobile industry. In the present paper, the structural analyses on the vacuum chamber of the electron beam welding system are performed by the F.E.M. analysis. The stiffening characteristics on the geometric shape, stiffener height and stiffener span are investigated. The deflection of the stiffened vacuum chamber under pressure is minimized by longitudinal and transverse stiffeners which are continuous in both direction.

  • PDF

Effects of Welding Perameters on Bead Width and Penetration in Electron Beam Welding (용입과 비이드 폭 에 미치는 전자 비임 용접 변수의 영향)

  • 김숙환;강춘식;윤종원;황선효
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 1984
  • In order to investigate the predominant factors which determine penetration depth and bead width in electron beam welding, bead-on-plate welding was carried out using 7075-T6 Al alloy. The results obtained from the present experiments can be summarized as follows; 1) With increasing accelerating voltage, bead width (B.W) decreases but penetration increases remarkably. 2) Increasing beam current results in increase of bead width and penetration respectively, and decrease of the ratio of penetration increment to beam current increment. 3) With increasing welding speed penetration decreases remarkably, while bead width creases.

  • PDF

A Study of the Measurements System in Electron Beam Welding (전자빔 용접 측정 시스템에 관한 연구)

  • Hong MinSung;Kim JongMin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.258-263
    • /
    • 2005
  • Because of its high performance and accuracy, electron beam welding has an important role in industrial applications such as semi-conductor and LCD manufactures. Since its operation has been done in a vacuum room, it is very difficult to check out their weldability as well as the correct welding area of the specimen. In this study, a measurement system of the electron beam welding has been developed based on the 3-axis LVDT controlled table. In addition, the algorithm to tracking the welding line has been developed. Welded regions were measured by using an A-scan ultrasonic sensor only. Weldability of the aluminum specimen has been tested by newly developed measuring system. The results are compared with those by using an C-scan ultrasonic sensor, which show good agreements with each other.

  • PDF

Laser Welding of Automotive Transmission Components (자동차 자동변속기 부품의 레이저 용접 적용)

  • Ahn, Young-Nam;Kim, Cheol-Hee
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.45-48
    • /
    • 2011
  • In this research, laser welding of automotive transmission components was investigated to replace electron beam welding which is normally conducted under vacuum condition. Fiber laser welding was applied to the automotive transmission components - hub clutch and annulus gear. In the component welding, the laser welding parameters were optimized to eliminate spatters and the end crater. By applying laser welding to the transmission parts, the process time could be reduced up to 70% compared with the current electron beam welding process.

The domestic development of 60kw Electron Beam Welding System (고정밀 60kW급 전자빔 용접시스템 국산화 개발)

  • 정원희;엄기원;정인철
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • The main characteristic of the Electron Beam Welding technique is its high energy density which produces thin and deep welds with very little distortion. High accelerated electrons, focused in a beam of 0.5 ∼ 2mm diameter, produce narrow welds with deep penetration. The result is a small HAZ as well as a low and uniform distortion which is predictible within very narrow limits. But the small diameter of the EB increases the requirements for the equipment control system for centering the beam on the welding joint in order to avoid any lack of fusion. Therefore, in this paper, we introduce the system developed at our company and the quality of welding zone, the detail function of system.

  • PDF

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

FRACTURE TOUGHNESS CHARACTERISTICS IN HIGH ENERGY DENSITY BEAM WELDED JOINT OF HIGH TENSILE STEELS

  • Ro, Chan-Seung;Yamada, Tomoaki;Mochizuki, Masahito;Ishikawa, Nobuyuki;Bang, Han-Sur;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.583-588
    • /
    • 2002
  • The purpose of the study is to evaluate fracture toughness on the Laser and the electron beam welded joints of high tensile steels (HT500, HT550, HT650) by using 3-point bend CTOD and Charpy impact test. WM (weld metal) CTOD tests have been carried out using two kinds of CTOD specimen, the Laser beam welding (108mm length, and 24mm width, and 12mm thickness) and the electron beam welding (l71mm length, and 38mm width, and 19mm thickness). WM Charpy impact specimen is a standard V-notch type, and the temperature of the experiment is changed from -45 to 20 degree of centigrade. FE-analysis is also performed in order to investigate the effect of stress-strain fields on fracture characteristics. Results of the standard V-notch Charpy test are influenced by strength mis-match effect and the absorbed energy vE depends on crack path, and The transition temperature of Laser beam welded joints is more higher than that of electron beam welded joints. Results of the 3-point bend test give low critical CTOD and the crack path is in the weld metal of al specimens. These results indicate fracture toughness characteristics of the welded joints and transition temperature of HT500 are similar both a Laser beam welded joint and an electron beam welded joint. But the fracture toughness and the transition temperature of the electron beam welded joints of HT550 and HT650 are higher than those o the Laser beam welded joints.

  • PDF