• Title/Summary/Keyword: Electromechanical system

Search Result 269, Processing Time 0.021 seconds

Structural & electrical properties of PbTi${O}_{3}$ system as a function of Mn${O}_{2}$ addition (Mn${O}_{2}$ 첨가에 따른 $PbTiO_3$계 세라믹스의 구조적, 전기적 특성)

  • 홍재일;유주현;윤현상;윤광희;장낙원;박창엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.11
    • /
    • pp.1488-1493
    • /
    • 1995
  • In this study, the structural, electrical and dielectric properties were investigated in (P $b_{0.76}$ $Ca_{0.24}$)[( $Co_{1}$2/ $W_{1}$2/)$_{0.04}$ $Ti_{0.96}$) $O_{3}$ system ceramics which were manufactured with the addition of Mn $O_{2}$. According to the increment of Mn $O_{2}$ addition, tetragonality was decreased. The specimen added with 1.5 mol% Mn $O_{2}$ and sintered at 1150.deg. C showed the highest density of 7.06[g/c $m^{3}$]. The variations of grain xize as a function of Mn $O_{2}$ addition were negligibly small. But grain was grown until 7.88[.mu.m] with increasing sintering temperature. Electromechamical coupling factor planar mode $K_{p}$ was decreased to a small value of $K_{p}$ = 0 in all the specimens added with Mn $O_{2}$ and sintered at 1150.deg. C & 1200.deg. C.& 1200.deg. C.

  • PDF

Development of Engine Piston Ring Surface for Friction Reduction using Micro Abrasive Air Jet (Micro-AAJ를 이용한 엔진 피스톤 링의 마찰 저감 표면 개발)

  • Choi, Soochang;Ro, Seung-Kook;Lee, Hyun-Hwa;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.389-394
    • /
    • 2014
  • In this paper, we report a new manufacturing method for friction reduction using micro-AAJ (abrasive air-jet) machining. AAJ machining employs compressed air to accelerate a jet of high-speed particles to mechanically machine features, including micro-channels and micro-holes, into glass, metal, or polymer substrates for use in microfluidics, MEMS (micro electromechanical systems). And we introduce the micro-AAJ machining system, which consists of a micro-AAJ nozzle and a five-axis positioning system. Various micro-AAJ nozzles can be used, depending on the required surface structure, and three-dimensional machining is possible. We machined samples under six different conditions and describe machining results obtained while using it. We also measured the coefficient of friction of micro-textured surfaces. We report the coefficient of friction of micro-textured surfaces patterned using micro-AAJ machining for engine piston ring.

Synthesis and characterization of powders in the La-Al-Si-O system

  • Kyoung Jin Kim;Kwang Suk Joo;Kun Chul Shin;Keun Ho Auh;Kyo Seon Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.475-479
    • /
    • 1999
  • Langasite ($La_{3}Ga_{5}SiO_{14}$) was found to have wide application as a promising piezoelectric material. It has high thermal stability of the frequency and large electromechanical coupling factor. For the further development of new compounds with langasite type structure, powders in the La-Al-Si-O system were synthesized by a modified Pechini process. The evolution of the crystalline phase during calcination was studied using TG-DTA, XRD and TEM for the precursor powders. Decomposition proceeded via dehydration and removal of excess solvents at low temperatures ($T<500^{\circ}C$), followed by the crystallization of lanthanum aluminum silicate ($T>800^{\circ}C$) and phase transformation to $LaAlO_{3}$ phase ($T>1200^{\circ}C$). Transmission electron microscopy (TEM) of the calcined powders showed diffuse hollow rings corresponding to an amorphous phase at $800^{\circ}C$ and clear diffraction patterns corresponding to a crystalline phase from the P321 space group ($T<1200^{\circ}C$) and the R3m ($T<1200^{\circ}C$).

  • PDF

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.

Piezoelectric Characteristics and Temperature Stability of Resonant Frequency of PbTiO3 System Ceramics for High Frequency Resonator using Srd Overtone Thickness Vibration Mode

  • Yoo, Juhyun ;Min, Sukkyu ;Hwang, Sangmo ;Park, Changyub;Yoon, Hyunsang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.338-343
    • /
    • 2002
  • In this study, $Pb_{0.88}(La_{\alpha}Nd_{1-\alpha})_{0.08}(Mn_{1/3}Sb_{2/3})_{0.02}Ti_{0.98}O_3$ system ceramics with La molar ratio $\alpha$ variation were manufactured for 24 MHz class resonator application. Electromechanical coupling factor, mechanical quality factor and dynamic range of $3^{rd}$ overtone thickness vibration mode were measured as the variations of La and Nd molar ratio. Mechanical quality factor and dynamic range at $\alpha$ = 0.6 composition ceramics showed the highest value of 2691 and 52.37 dB, respectively. The temperature coefficient of resonant frequency measured from $-20^{\circ} to 80^{\circ}$ showed an excellent value of $5ppm/^{\circ}C$ at $\alpha$=1 composition ceramics.

Contingency Analysis for Small Signal Stability of Power Systems (전력계통의 미소신호안정도 상정사고 해석)

  • 심관식;김용구;문채주
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.127-137
    • /
    • 2003
  • Contingency analysis is one of the most important tasks encountered by planning and operation of lafe scale power systems. This paper describes a new contingency analysis methods for small signal security assessment based on the eigen-sensitivity/perturbation of the electromechanical oscillation modes. The eigen-sensitivity/perturbation with respect to line suceptances and controller parameters can he used to find possible sources of the system instability, and to select contingency for small signal stability. Also, the contingency selection to identify critical generators for MW changes can be obtained by computing the relative movement of the system oscillation modes. The proposed algorithm has been successfully tested on the KEPCO systems which is comprised of 791-bus, 1575-branch and program PSS/E

임상전단계의 완전 이식형 인공심장 시스템 개발

  • Min, Byeong-Gu;An, Jae-Mok;Park, Chan-Yeong;Jo, Yeong-Ho;Choi, Won-Woo;Kim, Hyeon-Jeong;Park, Seong-Geun;Lee, Jong-Jin;Choi, Jae-Sun;Eom, Gyeong-Sik;Kim, Jong-Won;Jang, Jun-Geun;Kim, Hui-Chan;Kim, Won-Gon;Won, Yong-Sun;No, Jun-Ryang
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.125-128
    • /
    • 1996
  • A new type of motor-driven total artificial heart system with a moving-actuator mechanism has been developed. The prototype system consists of a brushless do motor inside of actuator, two polyurethane sacs, and peripheral devices with internal controller. In this research work, the moving-actuator type electromechanical total artificial heart was redesigned for a good anatomical fitting. For total implantation we are developing the internal controller with high reliability and stability, and automatic control algorithm in response to the physiological requirements of animal. Contents and scope of the research work on ";Development of a totally implantable artificial heart of pre-clinical stage"; is summerized below 1) Animal experiment using sheep(55-60kg) 2) Development of implantable controller 3) Automatic control algorithm 4) Improvement of biocompatibility 5) Redesign of Actuator/blood pump.

  • PDF

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci;Surkay D., Akbarov
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.247-263
    • /
    • 2023
  • The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.

Development of a Composite Rotor for Flywheel Energy Storage System (플라이휠 에너지 저장 장치용 복합재 로터 개발)

  • Kim, Myung-Hun;Han, Hun-Hee;Kim, Jae-Hyuk;Kim, Seong-Jong;Ha, Seong-Gyu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • A flywheel system is an electromechanical energy storage device that stores energy by rotating a rotor. The rotating part, supported by magnetic bearings, consists of the metallic shaft, composite rims of fiber-reinforced materials, and a hub that connects the rotor to the shaft. The delamination in the fiber wound composite rotor often lowered the performance of the flywheel energy storage system. In this work, an advanced hybrid composite rotor with a split hub was designed to both overcome the delamination problem in composite rim and prevent separation between composite rim and metallic shaft within all range of rotational speed. It was analyzed using a three-dimensional finite clement method. In order to demonstrate the predominant perfom1ance of the hybrid composite rotor with a split hub, a high spin test was performed up to 40,000 rpm. Four radial strains and another four circumferential strains were measured using a wireless telemetry system. These measured strains were in excellent agreement with the FE analysis. Most importantly, the radial strains were reduced using the hybrid composite rotor with a split hub, and all of them were compressive. As a conclusion, a compressive pressure on the inner surface of the proposed flywheel rotor was achieved, and it can lower the radial stresses within the composite rotor, enhancing the performance of the flywheel rotor.

  • PDF