• 제목/요약/키워드: Electromechanical coupling factor($k_p,k_t$)

검색결과 37건 처리시간 0.032초

고상단결정법으로 성장시킨 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ 압전단결정의 물성평가 (Characterization of the Material Properties of 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ Single Crystals Grown by the Solid-State-Crystal-Growth Method)

  • 이상한;노용래
    • 한국음향학회지
    • /
    • 제23권2호
    • /
    • pp.103-108
    • /
    • 2004
  • 본 연구에서는 고상단결정법으로 성장시킨 PMN-32%PT 단결정의 모든 물성을 공진법을 이용하여 측정하였다. tetragonal 결정구조의 PMN-PT는 독립적인 물성으로 6개의 탄성상수, 3개의 압전상수, 2개의 유전상수를 가진다. 이상의 값들을 서로 다른 형태를 가진 6종류의 시편을 만들어 임피던스 분석기를 이용하여 각각의 시편의 진동모드별 전기임피던스를 측정하여 구하였다. 측정결과 일반 압전세라믹 보다 큰 전기기계결합계수 k/sub 33/ (∼85%)과 압전계수 d/sub 33/ (∼1200pC/N)을 가짐을 확인하였다. 측정한 값의 타당성은 측정시편의 유한요소해석을 통한 임피던스 스펙트럼과 상용 d/sub 33/ -meter측정결과와의 비교를 통해 확인하였다.

비납계 (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 세라믹의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of Lead-free (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Ceramics)

  • 조정아;국민호;성연수;이수호;송태권;정순종;송재성;김명호
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.639-643
    • /
    • 2005
  • Lead-free $[Bi_{0.5}(Na_{1-x}K_x)_{0.5}TiO_3](x=0\~1.0)$ ceramics were prepared using a solid state reaction method and their structural and electrical characteristics were investigated. X-ray investigations indicated that the rhombohedral-tetragonal morphotropic phase boundary(MPB) of the $[Bi_{0.5}(Na_{1-x}K_x)TiO_3$ ceramics exists in the range of $x=0.16\~0.20$. The optimum values of piezoelectric constant$(d_{33})$, dielectric constant, and electromechanical coupling factor $(k_p)$ were obtained at $x=0.16\~0.20$ of the MPB region.

비납계 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO 세라믹스의 전기적, 구조적 특성 (Electrical and Structural Properties of Lead Free 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO Ceramics)

  • 이승환;남성필;이성갑;이영희
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.116-120
    • /
    • 2011
  • The 0.98 ($Na_{0.44}K_{0.52})Nb_{0.84}O_3-0.02Li_{0.04}$ ($Sb_{0.06}Ta_{0.1})O_3-0.5$ mol%CuO ceramics have been fabircated by ordinary sintering technique and the effect of various calcination method on the electrical propertis and microstructure have been studied. It was observed that the various calcination method influenced the elelctrical properties and structural properties of the 0.98NKN-0.02LST-0.5 mol%CuO ceramics with the optimum piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) at room temperature of about $155{\rho}C/N$ and 0.349, respectively, from 0.98NKN-0.02LST-0.5 mol%CuO ceramics sample. The curie temperature ($T_c$) of this ceramic was found at $440^{\circ}C$. The 0.98NKN-0.02LST-0.5 mol%CuO ceramics are a promising lead-free piezoelectric ceramics.

Step-down Piezoelectric Transformer Using PZT PMNS Ceramics

  • Lim Kee-Joe;Park Seong-Hee;Kwon Oh-Deok;Kang Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.102-110
    • /
    • 2005
  • Piezoelectric transformers(PT) are expected to be small, thin and highly efficient, and which are attractive as a transformer with high power density for step down voltage. For these reasons, we have attempted to develop a step-down PT for the miniaturized adaptor. We propose a PT, operating in thickness extensional vibration mode for step-down voltage. This PT consists of a multi-layered construction in the thickness direction. In order to develop the step-down PT of 10 W class and turn ratio of 0.1 with high efficiency and miniaturization, the piezoelectric ceramics and PT designs are estimated with a variety of characteristics. The basic composition of piezoelectric ceramics consists of ternary yPb(Zr$_{x}$Ti$_{1-x}$)O$_{3}$-(1-y)Pb(Mn$_{1/3}$Nb1$_{1/3}$Sb$_{1/3}$)O$_{3}$. In the piezoelectric characteristics evaluations, at y=0.95 and x=0.505, the electromechanical coupling factor(K$_{p}$) is 58$\%$, piezoelectric strain constant(d$_{33}$) is 270 pC/N, mechanical quality factor(Qr$_{m}$) is 1520, permittivity($\varepsilon$/ 0) is 1500, and Curie temperature is 350 $^{\circ}C$. At y = 0.90 and x = 0.500, kp is 56$\%$, d33 is 250 pC/N, Q$_{m}$ is 1820, $\varepsilon$$_{33}$$^{T}$/$\varepsilon$$_{0}$ is 1120, and Curie temperature is 290 $^{\circ}C$. It shows the excellent properties at morphotropic phase boundary regions. PZT-PMNS ceramic may be available for high power piezoelectric devices such as PTs. The design of step-down PTs for adaptor proposes a multi-layer structure to overcome some structural defects of conventional PTs. In order to design PTs and analyze their performances, the finite element analysis and equivalent circuit analysis method are applied. The maximum peak of gain G as a first mode for thickness extensional vibration occurs near 0.85 MHz at load resistance of 10 .The peak of second mode at 1.7 MHz is 0.12 and the efficiency is 92$\%$.

Effects of Pre-synthesized $BaTiO_3$ Addition on the Microstructure and Dielectric/ Piezoelectric Properties of $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ Piezoelectric Ceramics

  • Khansur, Neamul Hayet;Yoon, Man-Soon;Kweon, Soon-Yong;Lee, Young-Geun;Ur, Soon-Chul
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.189-189
    • /
    • 2008
  • Due to the environmental issue vast research is going on to replace the widely used lead contented piezoelectric materials. Bismuth sodium titanate (abbreviated as BNT) based bismuth sodium titanate-barium titanate (abbreviated as BNBT) ceramic was prepared by using modified method rather than conventional mixed oxide method. This modification was made to improve the properties of BNT based ceramic. In this procedure $BaTiO_3$ (abbreviated as BT) was prepared using conventional mixed oxide method. Analytical grade raw materials of $BaCO_3$ and $TiO_2$ were weighted and ball milled using ethanol medium. The mixed slurry was dried and sieved under 80 mesh. Then the powder was calcined at $1100^{\circ}C$ for 2 hours. This calcined BT powder was used in the preparation of BNBT. Stoichiometric amount of $Bi_2O_3$, $Na_2CO_3$, $TiO_2$ and BT were weighted and mixed by using ball mill. The used calcination temperature was $850^{\circ}C$ for 2 hours. Calcined powder was taken for another milling step. BNBT disks were pressed to 15 mm of diameter and then cold isostatical press (CIP) was used. Pressed samples were sintered at $1150^{\circ}C$ for 2 hours. The SEM microstructure analysis revealed that the grain shape of the sintered ceramic was polyhedral and grain boundary was well matched where as the sample prepared by conventional method showed irregular arrangement and grain boundary not well matched. And sintered density was better (5.78 g/cc) for the modified method. It was strongly observed that the properties of BNBT ceramic near MPB composition was found to be improved by the modified method compare to the conventional mixed oxide method. The piezoelectric constant dB of 177.33 pC/N, electromechanical coupling factor $k_p$ of 33.4%, dielectric constant $K_{33}^T$ of 688.237 and mechanical quality factor $Q_m$ of 109.37 was found.

  • PDF

소결온도와 B2O3첨가량에 따른 Mn첨가 PMN-PZT의 유전 및 압전특성의 변화 (Dielectric/piezoelectric Properties of Mn-Doped PMN-PZT with Variations of the Sintering Temperature and Addition of B2O3)

  • 신효순
    • 한국세라믹학회지
    • /
    • 제41권9호
    • /
    • pp.709-714
    • /
    • 2004
  • 우수한 압전 특성을 나타내는 것으로 알려진 Mn 첨가 PMN-PZT의 저온소결 첨가제가 실험되었다. 저온소결 첨가제로는 B$_2$O$_3$가 사용되었고 소결온도와 B$_2$O$_3$ 첨가량의 변화가 소결성과 유전 및 압전특성의 변화에 미치는 영향을 조사하였다. B$_2$O$_3$ 첨가량과 소결온도를 변화시킨 결과 B$_2$O$_3$ 첨가량 2wt% 이하 100$0^{\circ}C$이하 조건에서 소결밀도가 증가하여 B$_2$O$_3$가 저온소결재로 작용하였다. 그러나 10$50^{\circ}C$ 이상에서는 주조성인 PMN-PZT보다 낮은 소결밀도를 나타내었다. B$_2$O$_3$ 첨가에 따른 유전상수($\varepsilon$$_{33}$ $^{T}$ )의 변화를 확인할 결과 B$_2$O$_3$ 2wt% 100$0^{\circ}C$ 조건에서 1000의 유전율을 나타내었다. B$_2$O$_3$ 첨가량이 전기-기계 결합계수(k$_{p}$ )와 압전상수(d$_{33}$ )에 큰 저하를 가져오지 않는 B$_2$O$_3$ 첨가 한계는 2wt% 이하로 나타났다. 이때, k$_{p}$ 는 약 50%, d$_{33}$ 는 약 300(${\times}$$10^{-12}$ C/N) 정도의 값을 얻을 수 있었다. B$_2$O$_3$ 첨가는 기계적 품질계수(Q$_{m}$ )의 증가를 가져왔으며 0.5wt% B$_2$O$_3$ 첨가 110$0^{\circ}C$ 소결 조건에서 1700의 품질계수를 나타내었다. 유전손실은 B$_2$O$_3$ 첨가에 따라 큰 변화 없이 0.5% 이하의 값으로 나타났다.

초음파 진동자용 MnO2가 Doping된 PZT-PSN 세라믹스의 구조 및 압전 특성 (Structural and Piezoelectric Properties of MnO2-Doped PZT-PSN Ceramics for Ultrasonic Vibrator)

  • 차유정;김창일;김경준;정영훈;이영진;이해근;백종후
    • 한국재료학회지
    • /
    • 제19권4호
    • /
    • pp.198-202
    • /
    • 2009
  • For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of $(1\;-\;x)Pb(Zr_{0.515}Ti_{0.485})O_3$ - $xPb(Sb_{1/2}Nb_{1/2})O_3$ + 0.5 wt% $MnO_2$ [(1 - x)PZT - xPSN + $MnO_2$] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at $1250^{\circ}C$ for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to $1.3{\mu}m$ by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+$MnO_2$ ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + $MnO_2$ system, exhibited good piezoelectric properties: a piezoelectric constant ($d_{33}$) of 325 pC/N, an electromechanical coupling factor ($k_p$) of 70.8%, and a mechanical quality factor ($Q_m$) of 1779. The specimens with a relatively high curie temperature ($T_c$) of $305^{\circ}C$ also showed a significantly high dielectric constant (${\varepsilon}_r$) value of 1109. Therefore, the 0.96PZT - 0.04PSN + $MnO_2$ ceramics are suitable for use in ultrasonic vibrators.