• 제목/요약/키워드: Electromechanical coupling

검색결과 363건 처리시간 0.027초

압전 액츄에이터에 활용할 저온소결 압전 세라믹스에 관한 연구 (A Study on the Properties of the Low Temperature Sintered Piezoelectrics for Actuator Application)

  • 류성림;이상호;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.232-235
    • /
    • 2008
  • In this study, in order to develop the composition ceramics for multilayer piezoelectric actuator, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$, $Na_2CO_3$, ZnO as sintering aids and their piezoelectric and dielectric properties were investigated according to the Bi substitution, Bi substitution induced grain growth and increase of sinterablity, And also, Bi substitution suppress secondary phase due to the liquid phase sintering effect. Bi substitution enhanced electromechanical coupling factor ($k_p$) and dielectric constant ($\varepsilon_r$), However, mechanical quality factor($Q_m$) was deteriorated, At the sintering temperature of 870 $^{\circ}C$ and Bi substitution of 1 mol%, density, electromechanical coupling factor ($k_p$), mechanical quality factor ($Q_m$), Dielectric constant ($\varepsilon_r$) and piezoelectric constant ($d_{33}$) of specimen showed the optimum values of 7,878 $g/cm^3$, 0,608, 835, 1603 and 397 pC/N, respectively for multilayer piezoelectric actuator application.

BaTiO3 치환에 따른 NaNbO3-LiNbO3 세라믹스의 압전 및 유전특성 (Piezoelectric and Dielectric Properties of NaNbO3-LiNbO3 Ceramics according to the BaTiO3 Substitution)

  • 이상호;류주현;마석범;김성구
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.205-209
    • /
    • 2009
  • In this study, in order to develop the composition ceramics for lead-free ultrasonic motor, (1-x-0.09)$NaNbO_{3-x}BaTiO_3-0,09LiNbO_3$ ceramics were fabricated using a conventional mixed oxide process and their piezoelectric and dielectric characteristics were investigated according to the $BaTiO_3$ substitution. All the specimens showed orthorhombic phase structure without secondary phase, $BaTiO_3$ substitution enhanced density, dielectric constant(${\epsilon}_r$) and electromechanical coupling factor($k_p$), However, mechanical quality factor was deteriorated. Curie temperature of specimens was observed as about $380^{\circ}C$. At the $BaTiO_3$ substitution of 4 mol%, density, electromechanical coupling factor($k_p$), dielectric constant(${\epsilon}_r$) and piezoelectric constant($d_{33}$) of specimen showed the optimum value of $4.493g/cm^3$, 0.236, 175, 70 pC/N, respectively.

심벌형 압전 에너지 하베스터 에너지 수율 향상 연구 (Research on the Efficiency Improvement of the Cymbal-type Piezoelectric Energy Harvester)

  • 나영민;박종규
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.70-76
    • /
    • 2017
  • The pollution problem of fossil energy sources has caused the development of green energy harvesting systems. Piezoelectric energy harvesting technology has been developed under those external environmental factors. A piezoelectric energy harvester can be defined as a device which transforms mechanical vibration or impact energy into electrical energy. Most researches have focused on bender structures. However, these have a limitation on energy efficiency because of the small effective electromechanical coupling factor, around 10%. Therefore, we should look for a new design for energy harvesting. A cymbal energy harvester can be a good candidate for the high-power energy harvester because it uses a high amplification mechanism using endcaps while keeping a higher electromechanical coupling factor. In this research, we focused on energy efficiency improvements of the cymbal energy harvester by changing the polarization direction, because the electromechanical coupling factor of the k33 mode and the k15 mode is larger than that of the k31 mode. Theoretically, we checked the cymbal harvester with radial polarization and it could obtain 6 times larger energy than that with the k31 direction polarization. Furthermore, we verified the theoretical expectation using the finite element method program. Consequently, we could expect a more efficient cymbal harvester with the radial polarization by comparing two polarization directions.

PZT-PSN 세라믹스의 WO3의 첨가량에 따른 압전 특성 (Piezoelectric Characteristics of PZT-PSN Ceramics Depending on WO3Addition)

  • 배숙희;김성곤;김철수;이경화;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제15권9호
    • /
    • pp.794-797
    • /
    • 2002
  • Piezoelectric properties of PZT-PSN ceramics were investigated as a function of WO$_3$ addition from 0 wt% to 6.0 wt%. The dielectric and piezoelectric characteristics of PZT-PSN ceramics have been investigated at different calcination (80$0^{\circ}C$~90$0^{\circ}C$) and sintering (110$0^{\circ}C$~130$0^{\circ}C$) temperatures. The grain size was increased with the addition of WO$_3$and the sintering temperatures. Anisotropic properties of electromechanical coupling coefficient and piezoelectric coefficient are proven to be dependent on processing temperatures and amount of addition. At the specimen with 0.6 wt% WO$_3$ addition, using calcination temperature of 80$0^{\circ}C$ and sintering temperature of 110$0^{\circ}C$ , mechanical quality factor(Q$_{m}$) and electromechanical coupling coefficient(k$_{p}$) showed the excellent results of 1560 and 0.48, respectively Experimental results indicated that the PZT-PSN system ceramics with WO$_3$impurity could be effectively used for the microtransformer and actuator applications, etc.etc.

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

$BaTiO_3$ 치환에 따른 (Na,Li)$NbO_3$ 세라믹스의 압전 및 유전특성 (Piezoelectric and Dielectric Properties of (Na,Li)$NbO_3$ Ceramics According to the $BaTiO_3$ substitution)

  • 이상호;이갑수;류주현;류성림;송현선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.272-273
    • /
    • 2007
  • In this study, in order to develop the composition ceramics of lead-free ultrasonic motor, (Na,Li)$NbO_3-BaTiO_3$ ceramics were fabricated using a conventional mixed oxide process and their piezoelectric and dielectric characteristics were investigated according to the $BaTiO_3$, substitution. $BaTiO_3$ substitution enhanced density, dielectric constants$({\varepsilon}_r)$ and electromechanical coupling factor$(k_p)$. However, mechanical quality factor was deteriorated. At the $BaTiO_3$ substitution of 4mol%, density, electromechanical coupling factor$(k_p)$, dielectric constants$({\varepsilon}_r)$ and piezoelectric constant$(d_{33})$ of specimen showed the optimum value of $4.493g/cm^3$, 0.236, 175, 70pC/N, respectively.

  • PDF

첨가제에 의한 PZT세라믹의 전기적 특성에 관한 연구 (A study on the electrical characteristic of PZT ceramics with additive.)

  • 김현철;김진섭;김혁동;배선기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.236-239
    • /
    • 1999
  • This paper is the study for electrical characteristic of PZT ceramics with Sb$_2$O$_3$, CoO additive. Effect of Sb$_2$O$_3$, CoO additive ranged from 0.0 wt% to 1.2wt% on the electrical characteristic of the PZT ceramics have been investigated. In the case of Sb$_2$O$_3$ 0.6wt%, the maximum vague of mechanical quality factor(Qm) was obtained 124.11 at l15$0^{\circ}C$. And, additive CoO 1.2wt% was obtained 184.12 at l15$0^{\circ}C$. The electromechanical coupling factor(kp) was increased by increasing the amount of Sb$_2$O$_3$, CoO additive. The maximum value of electromechanical coupling factor(kp) was obtained 58.35 with Sb$_2$O$_3$1.2wt% additive at l15$0^{\circ}C$. Dopped with additive CoO 0.9wt%, electromechanical coupling factor(kp) was obtained 47.84 at 115$0^{\circ}C$.

  • PDF

액츄에이터용 PMW-PNN-PZT 세라믹스의 압전특성 (Piezoelectric Characteristics of PMW-PNN-PZT Ceramics for Actuator Application)

  • 유경진;류주현;윤현상;박창엽;정영호;이형규;강형원
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.332-333
    • /
    • 2005
  • In this study, in order to develop low temperature sintering piezoelectric actuator, $Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.50},Ti_{0.50})_{1-x-0.03}$ (PMW-PNN-PZT) ceramic systems were fabricated using $CaCO_3-Li_2CO_3$ sintering aid and their dielectric and piezoelectric properties were investigated with the variation of PNN substitution. The piezoelectric actuator requires high piezoelectric constant $d_{33}$ and high electromechanical coupling factor kp. At the PMW-PNN-PZT ceramics with 9mol% PNN substitution sintered at $900^{\circ}C$, the density, electromechanical coupling factor kp, dielectric constant, piezoelectric constant $d_{33}$ and mechanical quality factor Qm showed the excellent values of 7.86 [$g/cm^3$], 0.584, 1881, 485 [pC/N] and 76, respectively for piezoelectric actuator application.

  • PDF

적층 압전 변압기용 변성 $PbTiO_3$ 세라믹스의 압전 및 유전 특성 (Piezoelectric and dielectric Properties for Multilayer Piezoelectric Transformer Of Modified $PbTiO_3$ system ceramics)

  • 유경진;류주현;정영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.344-345
    • /
    • 2006
  • In this study, in order to develop low temperature sintering piezoelectric transformer, $(Pb_{0.99-x}Ca_xSr_{0.01})Ti_{0.96}(Mn_{1/3}Sb_{2/3})_{0.04}O_3$ ceramic systems were fabricated using $Na_2CO_3-Li_2CO_3$ as sintering aids and investigated with the amount of Ca substitution. The piezoelectric transformer requires high electromechanical coupling factor $k_t$ and high mechanical quality factor $Q_{mt}$ for generating high output power At the ($PbCaSr)Ti(MnSb)O_3$ ceramics with 24mol% Ca substitution sintered at $900^{\circ}C$, electromechanical coupling factor $k_t$ and mechanical quality factor $Q_{mt}$ showed the optimal values of 0.504 and 1655 respectively, for thickness vibration mode multilayer piezoelectric transformer application.

  • PDF

SrTiO3 치환에 따른 (Na,K)NbO3계 세라믹스의 유전 및 압전특성 (Dielectric and Piezoelectric Properties of (Na,K)$NbO3 Ceramics as a Function of SrTiO3 Substitution)

  • 이상호;류주현;이의용;송현선;마석범;김성구
    • 한국전기전자재료학회논문지
    • /
    • 제22권6호
    • /
    • pp.484-488
    • /
    • 2009
  • In this study, in order to develop the lead-free piezoelectric ceramics with high piezoelectric and dielectric properties, $[(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}(Nb_{0.96}Sb_{0.04})]O_3$ ceramics were fabricated using $Ag_2O$ as sintering aid and a conventional mixed oxide process and their piezoelectric and dielectric characteristics were investigated according to the $SrTiO_3$ substitution. $SrTiO_3$ substitution enhanced density, dielectric constant(${\varepsilon}_r$) and electromechanical coupling factor($k_p$). However, mechanical quality factor was deteriorated. And also, Curie temperature ($T_c$), and phase transition temperature($T_p$) were rapidly decreased. At the 0.5 mol% $SrTiO_3$ substitution, density, electromechanical coupling factor($k_p$), dielectric constant(${\varepsilon}_r$) and piezoelectric constant($d_{33}$) of specimen showed the optimum value of $4.437\;g/cm^3$, 0.457, 1294, 265 pC/N, respectively.