• Title/Summary/Keyword: Electromagnetic wave propagation

Search Result 194, Processing Time 0.024 seconds

The Measurement and Analysis of Radio Characteristic of 424 MHz Short Range Wireless Frequency (424 MHz 소출력 무선주파수 전파특성 측정 및 분석)

  • Lim, Yong-Hun;Choi, Hyo-Yul;O, Kyu-Whan;Lee, Beom-Seok;Hyun, Duck-Hwa
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.437-442
    • /
    • 2005
  • This paper deals with the measurement and analysis of radio characteristic of 424 MHz for using the automation of transmission and supply of electric power, ana automatic meter reading(AMR). Normally radio propagation characteristic is the base of system design, performance evaluation and choice of position of the base station in wireless communication. It is the most accurate way to design a base station through practical measurements, but it costs much time, money and engineers. So, we developed 424 MHz short range wave propagation model for AMR service.

  • PDF

A Study on the Numerical Wave Propagation Properties of the Finite Difference-Time Domain(FD-TD) Method for EM Wave Problems (전자파 문제에 대한 시간영역-유한차분법의 수치파 전파모델의 성질에 관한 연구)

  • 김인석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1595-1611
    • /
    • 1994
  • In this paper, the numerical wave propagation properties of the finite difference-time domain(FD-TD) method is investigated as a discrete model describing electromagnetic(EM) wave propagation phenomena. The leap-frog approximation of Maxwell's curl equations in time-space simulates EM wave propagation in terms of the numerical characteristic and the domain of dependence. A geometrical interpretation of the FD-TD numerical procedure is presented. The numerical dispersion error due to the leap-frog approximation and its dependence on the stability factor are illustrated. The FD-TD method using the leap-frog approximation is inherently a descriptive model. Thus, not only any physical picture about EM wave propagation phenomena can be drawn through this model, but also physical or engineering parameters in the frequency domain can be extracted from descriptive results. E-plane filter characteristics in the WR-28 rectangular waveguide and reflection property of an inductive iris in the WR-90 rectangluar waveguide extracted from simulation of the FD-TD model is included.

  • PDF

A Study of the Surface Wave Propagation on the Various Types of Grounds (다양한 접지면 형태에 따른 표면파 전파에 관한 기초연구)

  • Park, Minseo;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.869-875
    • /
    • 2015
  • In this paper, the surface wave that caused the isolation problem when the design of the array antenna is studied. The grounded dielectric slab model is used in order to simulate in the similar environment with the surface wave of the microstrip patch antenna. The propagation of the surface wave on the various types of grounds which are defected ground structure(DGS), perfect magnetic conductor(PMC), Soft-surface, and Hard-surface is simulated. As a result, 25 % power is blocked by the DGS when the TM-wave incident. Also, 95 % power is blocked by the PMC and Soft-surface. This study will be very useful to increase the gain of an array antenna by improving the isolation between the antenna elements.

Simulation of Time Delay Communication algorithm In the Shallow Underwater Channel

  • Yoon, Byung-Woo;Eren Yildirim, Mustafa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The need of data transmission in oceans and other underwater mediums are increasing day by day, so as the research. The underwater medium is very different from that of air. Propagation of electromagnetic wave in water or underground is very difficult because of the conductivity of the propagation materials. In this case, we usually use acoustic signals as ultrasonic but, they are not easy to transfer long distance with coherent method because of time varying multipaths, Doppler effects and attenuations. So, we use non-coherent methods such as FSK or ASK to communicate between long distances. But, as the propagation speed of acoustic wave is very slow, BW of the channel is narrow. It is very hard to guaranty the enough speed for the transmission of digital image data. In previous studies, we proposed this data communication protocol theoretically. In this paper, an underwater channel is modeled and this protocol is tested in this channel condition. The results show that the protocol is 4-6 times faster than ASK. Some relations and results are shown depending on the data length, channel length, bit rate etc.

FVTD-LTS Method for Electromagnetic Field Analysis by Dielectric with large Permittivity (큰 유전율을 가지는 유전체의 전자계 해석을 위한 FVTD-LTS 기법)

  • Yoon, Kwang-Yeol;Chai, Yong-Yoong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.334-338
    • /
    • 2006
  • The finite volume time domain(FVTD) method gives accurate results for the calculation of electromagnetic wave propagation but it should be noted that the number of sampling points per wavelength should be increased when more accurate numerical results are required. Moreover it requires large amount of computer memory resources. In this paper we propose a modified FVTD that employs a time subdivision. The local time-subdivided FVTD(FVTD-LTS) method is enough to divide the space domain grid with a large step size. This method can reduce computation time and memory resources. To validate the proposed method, sever numerical examples are presented. We have then shown that the proposed method yields a reasonable solution.

2-D Modeling of Electromagnetic Waves for the Probing of Concrete (콘크리트 내부 탐사를 위한 전자기파의 2차원 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.18-23
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 19.1 mm rebar embedded at 40 mm, 60 mm, and 80 mm depth are modeled in 3-dimension. As results, 2-D image processing scheme of modeling data has been developed and applied to the imaging of steel bars inside concrete.

  • PDF

Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature

  • Abo-Dahab, S.M.;Othman, Mohamed I.A.;Alsebaey, Ohoud N.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, we established the generalized thermoelasticity phenomenon in an isotropic elastic medium considering the electromagnetic field, rotation and two-temperature. Three theories of generalized thermoelasticity have been applied: Lord-Shulman (one relaxation time), Green-Lindsay (two relaxation times), as well as the coupled theory. We discussed some particular cases in the context of the wave propagation phenomenon in thermoelasticity. From solving the fundamental equations, we arrived that there are three waves: P-, T- and SV-waves that we calculated their velocities. The boundary conditions for mechanical stress and Maxwell's stress and thermal insulated or isothermal have been applied to determine the amplitudes ratios (reflection coefficients) for P-, T - and SV waves. Some utilitarian aspects are obtained from the reflection coefficients, presented graphically, and the new conclusions have been presented. Comparisons are made for the results predicted by different theories (CT, LS, GL) in the absence and presence of the electro-magnetic field, rotation, as well as two-temperature on the reflection of generalized thermoelastic waves. The results obtained concluded that the external parameters as the angle of incidence, electromagnetic field, rotation as well as the theories parameters have strong effect on the phenomenon.

The Measurement and Analysis of Path Loss in Millimeter-Wave Band for Different Progation Environments (전파환경에 따른 밀리미터파 대역 경로손실 측정 및 분석)

  • 정남호;백정기;김준철;황정환;한동필
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.410-418
    • /
    • 2000
  • In this paper, path losses in millimeter-wave band for different propagation environments are measured, and the results are analyzed by modeling the median, maximum, and minimum values of the measurement data for each site, which are recorded for 5 minutes, with a linear regression model. The measurement data shows that in urban and suburban environments, extra path loss must be taken into account for line-of-sight path, even in millimeter wave band.

  • PDF

Propagation and Radiation Characteristics of Elliptical Corrugated Waveguide (타원형 커루게이트 도파관의 전파 및 복사 특성)

  • 고욱희;백경훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.614-620
    • /
    • 1998
  • In this paper, we analyze theoritically the propagation and radiation characteristics for elliptical corrugated waveguides. The solutions of wave equations in an elliptic cylinder system are obtained in terms of Mathieu functions of 1st and 2nd kind. The electromagnetic fields in the elliptical corrugated waveguide can be represented by series and products of angular and radial Mathieu functions. By using impedence matching at the boundary between the inner region and the slot region, characteristic equations are derived. Then the characteristic equation is solved for $HE_{11}$ mode which is dominant mode in the elliptical corrugated waveguide and the fields in the aperture is calculated. And the propagation pattern for the elliptical corrugated waveguides is calculated through the field equivalence principle.

  • PDF

Topological Derivative for Fast Imaging of Two-Dimensional Thin Dielectric Inclusions in The Wave Propagation Environment

  • Park, Won-Kwang
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • In this paper, we consider the topological derivative concept for developing a fast imaging algorithm of thin inclusions with dielectric contrast with respect to an embedding homogeneous domain with a smooth boundary. The topological derivative is evaluated by applying asymptotic expansion formulas in the presence of small, perfectly conducting cracks. Through the careful derivation, we can design a one-iteration imaging algorithm by solving an adjoint problem. Numerical experiments verify that this algorithm is fast, effective, and stable.