• Title/Summary/Keyword: Electromagnetic torque

Search Result 195, Processing Time 0.023 seconds

A Study on Dynamic Behaviour of Single Cylinder Reciprocating Compressor by Joint Simulation of Flexible Multi-body Dynamics and Electromagnetic Circuit (유연체 동역학 모델과 전력전자 회로의 연동해석을 통한 단기통 왕복 압축기 거동해석에 관한 연구)

  • Sung, Won-Suk;Hwang, Won-Gul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2012
  • The characteristics of vibration and noise of a compressor used for electric appliances have significant influence on the quality of the products. For improvement on the quality of electric appliances, investigations for understanding the dynamic behaviour of the compressor are essential. Since Virtual Lab for the dynamics model and MAXWELL for the electromagnetics model are separate software programs with no interface, the joint simulation of the models could not be performed. This study suggests a way to develop the compressor model capable of the joint simulation with MATLAB/SIMULINK linking a flexible multi-body dynamics model, a torque model, and an electricity control model. The compressor model is found to be able to perform I/O data transfer among the sub-models and joint simulation. The simulation results of the flexible body and rigid body dynamics models were compared to check availability of the joint simulation system. In addition, the simulated vibration and driving torque of the compressor mechanisms were compared with measurements. Through the simulations, the influence of springs and LDT on the dynamic behaviour of the compressor was examined. This study examines the influence of the dynamic behaviour of the compressor mechanisms through joint simulation of the flexible multi-body dynamics model and electromagnetic circuit allows analysis.

The Analysis of the Muscle Fatigue Recovery Effect on LR9 by Compound Stimulation of the PEMFs and LED (음포혈(陰包, LR9)에서 펄스형 전자기장 및 가시광 LED 복합 자극이 대퇴부 근피로 회복에 미치는 영향 분석)

  • Lee, Na-Ra;Kim, Jung-Yoon;Park, Sun-Woo;Kim, Soo-Byeong;Lee, Hee-Young;Ahn, Soon-Jae;Kim, Young-Ho;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.28 no.3
    • /
    • pp.13-23
    • /
    • 2011
  • Objectives : The aim of this study was to develop the combined medical stimulus system consisted of the PEMFs (Pulsed electromagnetic fields) and LED which are able to stimulate local point such as acupoints and trigger points. Methods : To evaluate the therapeutic effect on the musculoskeletal disorders and the possibility of alternative method on manual acupuncture, we compared the fatigue recovery of two groups by analyzing the EMG and peak torque (non-stimulation and, stimulation group) after strenuous knee exercise. We chose the LR9 as a stimulation point. Results : The median frequency (MF) and fatigue index (F.I) of the stimulation group were recovered faster than those of the non-stimulation group. Also the peak torques of both groups were not restored until after 20 minutes. However, the peak torque of the stimulation group was regained higher than that of the non-stimulation group. Conclusions : We confirmed that the proposed combined stimulus system had useful effects as treatment instrument of musculoskeletal disorder using non-invasive method of PEMFs and LED.

Optimization of Voice Coil Motors for a Small Guided Missile Fin Actuator (소형 유도무기 날개 작동기용 보이스 코일 모터의 최적 설계)

  • Lee, Choong Hee;Kim, Gwang Tae;Lee, Byung Ho;Cho, Young Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.59-65
    • /
    • 2019
  • In this study, optimal design of direct-drive VCMs (Voice Coil Motor) for a missile fin actuator is carried out. The torque performance and the characteristics of the VCM are predicted by commercial electromagnetic analysis software, ANSYS Maxwell. The optimal design is obtained at the minimum and maximum actuating angles where the aerodynamic load acting on the fin is the largest in the operating range. The critical variables of the actuator is designed and the RSM (Response Surface Method) is used for the optimization. The response surface model consists of second-order functions and its experimental points are selected by a central composite design. This design is widely used for fitting a second-order response surface. The adjustment regression coefficients is computed for adequacy checking of the response surface model. Finally, the torque values obtained by the RSM and the ANSYS Maxwell are shown in good agreement.

Development of Vibration Motor Using Coreless Permanent Magnet DC Motor (무철심 영구자석 직류 모터를 이용한 진동자 개발)

  • Hwang, Sang-Moon;Chung, Shi-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.15-23
    • /
    • 1999
  • With a remarkable expansion of communication industry, a pager or a cellular phone becomes a necessary communication device in modern society. However, a paging signal by a buzzer is often acted as an unpleasant noise in some places, thus necessitating a paging signal by a vibration motor. In this paper, a simpler type of a vibration motor, a coreless permanent magnet(PM) DC motor, is considered to substitute for the conventional vibration motors. Using an analytical method, electromagnetic field and operating torque were calculated for the given inner and outer PM type motors, and the results were confirmed by FEM analysis. As design parameters, number of PM poles, PM radial thickness, coil arc angle and number of winding stacks were chosen for sensitivity analysis. It shows that coil arc angle is the most important design parameter to increase the motor performance, without giving an adverse effect on motor weight, size and manufacturing cost. Based on the analysis of the outer PM type motor, an outer square PM type motor is proposed as the final design. Compared to the outer PM type, outer square type provides more flexibility to attach to the small size cellular phones. With the optimum design of square outer PM DC motor, it can successfully substitute the conventional types with less expensive manufacturing cost. better performance and smaller necessary space.

  • PDF

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

EMI Noise Reduction with New Active Zero State PWM for Integrated Dynamic Brake Systems

  • Baik, Jae-Hyuk;Yun, Sang-Won;Kim, Dong-Sik;Kwon, Chun-Ki;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.923-930
    • /
    • 2018
  • Based on the application of an integrated dynamic brake (IDB) system that uses a PWM inverter fed-AC motor drive to operate the piston, a new active zero state PWM (AZSPWM) is proposed to improve the stability and reliability of the IDB system by suppressing the conducted electro-magnetic interference (EMI) noise under a wide range of load torque. The new AZSPWM reduces common-mode voltage (CMV) by one-third when compared to that of the conventional space vector PWM (CSVPWM). Although this method slightly increases the output current ripple by reducing the CMV, like the CSVPWM, it can be used within the full range of the load torque. Further, unlike other reduced common-mode voltage (RCMV) PWMs, it does not increase the switching power loss. A theoretical analysis is presented and experiments are performed to demonstrate the effectiveness of this method.

Contact-less Conveyance of Conductive Plate by Controlling Permalloy Sheet for Magnetic Shield of Air-gap Magnetic Field from Magnet Wheels (마그네트 휠의 공극 자기장 차폐판 조절에 의한 도전성 평판의 비접촉 반송)

  • Jung, Kwang-Suk;Shim, Ki-Bon;Lee, Sang-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.109-116
    • /
    • 2010
  • The magnet wheel which generates on its interfacing conductive part a repulsive force and a traction torque by rotation of permanent magnets is used to manipulate the conductive plate without mechanical contact. Here, the air-gap magnetic field of the magnet wheel is shielded partially to convert the traction torque into a linear thrust force. Although a magnitude of the thrust force is constant under the fixed open region, we can change the direction of force by varying a position of the shield sheet. So, the spatial position of conductive plate is controlled by not the force magnitude from each magnet wheel but the open position of shield sheet. This paper discusses non-contact conveyance system of the conductive plate using electromagnetic forces from multiple magnet wheels.

Efficiency Optimization Control of SynRM Drive with HAI Controller (HAI 제어기에 의한 SynRM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Byung-Sang;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.743-744
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

Mathematical Modeling and Control for A Single Winding Bearingless Flywheel Motor in Electric/Suspension Mode

  • Yuan, Ye;Huang, Yonghong;Xiang, Qianwen;Sun, Yukun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1935-1944
    • /
    • 2018
  • With the increase of the production of energy from renewable, it becomes important to look at techniques to store this energy. Therefore, a single winding bearingless flywheel motor (SWBFM) specially for flywheel energy storage system is introduced. For the control system of SWBFM, coupling between the torque and the suspension subsystems exists inevitably. It is necessary to build a reasonable radial force mathematical model to precisely control SWBFM. However, SWBFM has twelve independently controlled windings which leads to high-order matrix transformation and complex differential calculation in the process of mathematical modeling based on virtual displacement method. In this frame, a Maxwell tensor modeling method which is no need the detailed derivation and complex theoretical computation is present. Moreover, it possesses advantages of universality, accuracy, and directness. The fringing magnetic path is improved from straight and circular lines to elliptical line and the rationality of elliptical line is verified by virtual displacement theory according to electromagnetic torque characteristics. A correction function is taken to increase the model accuracy based on finite element analysis. Simulation and experimental results show that the control system of SWBFM with radial force mathematical model based on Maxwell tensor method is feasible and has high precision.

A Study on the Reduction of Cogging Torque of the Spindle Motor by Design of Magnetizer Shape (착자기 형상 설계를 통한 스핀들 모터의 코깅 토크 저감에 관한 연구)

  • Oh, Se-Young;Lim, Seung-Bin;Lee, Jin-Hun;Jung, Dae-Sung;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.983-984
    • /
    • 2007
  • The spindle motor used on the ODD has a characteristic that electromagnetic pulsation and noise change differently by magnetization pattern of rotor. Therefore, design of magnetizer yoke that make to have optimal magnetization pattern is very important. In this paper, we proposed an analysis method that applies magnetizer analysis result to the spindle motor. We measured back-EMF of the real spindle motor. And then, we verified validity of the proposed analysis method by comparing the measurement and analysis result. Also, we designed the magnetizer shape that has optimal magnetization pattern by using proposed method. As a result, we reduced cogging torque of the spindle motor.

  • PDF