• Title/Summary/Keyword: Electromagnetic field analysis

Search Result 790, Processing Time 0.026 seconds

Analysis of Electromagnetic Wave Interference Environment to Industrial Machinery (산업설비의 전자파 장해환경 분석)

  • Hong, Yong-Gyu;Kim, Tae-Hyun;Kim, Duck-Keun;Lim, Jang-Sub;Moon, Chae-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1835-1837
    • /
    • 2001
  • The interference of electromagnetic waves in factory is increasing according with development of industrial society and many use of electrical machinery. Electromagnetic wave is defined as the electrical and magnetic field formed by electrical and electronic equipment used in daily lives, which indiscriminatingly affects the human health and operation of machinery. The electromagnetic spectrum ranges from the shorter wavelengths(including gamma and x-rays) to the longer wavelengths(including microwaves and broadcast radio waves). Radiation that is not absorbed or scattered in the atmosphere can reach and affect on the operation of machine. In this study, electromagnetic wave that is interfered to the machine and human is detected in factory, and decrease method of electromagnetic wave interference is studied.

  • PDF

Electromagnetic interference caused by an electric-line current in a cable tray in nuclear power plants

  • Lee, Hoon-Keun;Kim, Yong-Hwa;Choo, Jaeyul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3314-3318
    • /
    • 2021
  • This paper presents a mode-matching analysis of the electromagnetic coupling between open cable trays in an indoor structure when an electric-line current is generated as an electromagnetic source. We validated the mode-matching method by comparing the mode-matching results with those computed from a commercial electromagnetic simulator and then investigated the strength of the electric-field coupled in a victim cable tray while varying the distances between cable trays and architectural surfaces. The results of this study provide geometrical information on the placement of open cable trays to avoid electromagnetic interference problems.

Analytical Prediction and Experimental Verification of Electromagnetic Performance of a Surface-Mounted Permanent Magnet Motor having a Fractional Slot/Pole Number Combination

  • Hong, Sang-A;Choi, Jang-Young;Jang, Seok-Myeong
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • This paper presents an analytical prediction and experimental verification of the electromagnetic performance of a parallel magnetized surface-mounted permanent magnet (SPM) motor having a fractional number of slots per pole combination. On the basis of a two-dimensional (2-D) polar coordinate system and a magnetic vector potential, analytical solutions for flux density produced by the permanent magnets (PMs) and stator windings are derived. Then, analytical solutions for back-electromotive force (emf) and electromagnetic torque are derived from these field solutions. The analytical results are thoroughly validated with 2-D nonlinear finite element (FE) analysis results. Finally, the experimental back-emf and electromagnetic torque measurements are presented to test the validity of the analysis.

Numerical Analysis of Back Scattering from a Target over a Random Rough Surface Using DRTM

  • Yoon, Kwang-Yeol
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.2
    • /
    • pp.61-66
    • /
    • 2010
  • This paper is concerned with an analysis of the back scattering of electromagnetic waves from a target moving along random rough surfaces such as the desert, and sea. First, the discrete ray tracing method(DRTM) is introduced, and then, this method is applied to the back scattering problem in order to investigate the effect of the back scattering from random rough surfaces on the electric field intensities. Finally, numerical examples of various height deviations of the Gaussian type of rough surfaces are shown. It is numerically demonstrated that the back scattering is dominated by the diffractions related to the reflections from the random rough surfaces.

Response of Angled two-Strip Transmission Lines to the Incident Angle of an External Electromagnetic Field, II : Modal Analysis on an Equivalent Structure (외부 전자파의 입사방향에 대한 각진 두 스트립으로 구성된 전송선의 반응, II:등가구조의 모드해석)

  • 홍성용;김세윤;나정웅
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.1
    • /
    • pp.3-9
    • /
    • 1993
  • A new method is developed for analysis of the electromagnetic coupling to an angled two-strip transmission line. It consists of solving the cylindrical transmission line equations an- alytically, and then adjusting the involved parameters to support the cylindrical TEM mode along its equivalent model of the angled two-plate transmission line. Its analytic solution agrees with the numerical value obtained by using the circuit-concept approach.

  • PDF

Electromagnetic Field Analyses of Electrodeless Fluorescent Lamp (무전극 전구형 형광램프의 전자계 해석)

  • Kim, Kwang-Soo;Lee, Jong-Chan;Choi, Yong-Sung;Park, Dea-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.67-70
    • /
    • 2002
  • The electrodeless lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. but Increasing awareness of electromagnetic compatibility(EMC) issues in lighting application, the problems of interference generation by electrodeless fluorescent lighting system have been highlighted. In this paper, Maxwell 2D finite element analysis program(ansoft) is used to obtain electromagnetic properties associated with the coil and nearby structures. and also evaluated Flux, B, H, by changing the input current.

  • PDF

Thin Sheet Metal Forming Process Analysis and Formability Evaluation using Electromagnetic Force (전자기력을 이용한 박판 성형 공정 해석 및 성형성 평가)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.387-390
    • /
    • 2008
  • Electromagnetic forming (EMF) technology, which is one of the high speed forming methods, has been used for the forming process in various industry fields. Numerical approach by finite element simulation of the EMF process is presented in this study. The implicit code is used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. In addition, the body forces generated in the workpiece are used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit code. Numerical approach for a dimpled shape by EMF process is carried out and the simulated results of the dimpled shape by EMF are reviewed in view of the deformed shape and formability evaluation.

  • PDF

A Study on Phenomena of Sea Propagation Considering Surface Wave (표면파 성분을 고려한 해면전파 현상에 관한 연구)

  • 서덕수;이민수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.376-383
    • /
    • 1996
  • In general, the electromagnetic field analysis of a vertical dipole mainly deals with the space. wave. But when only the space wave is considered, as a receiving point is close to the surface of medium, the receiving electric field strength is rapidly decreased. In this paper, to solve this problem, we considered both the surface wave and the space wave contribution. When the vector potential is used with the angular spectrum transformation method, the space wave and the surface wave are included in the final electric field expression. By using this final electric field expression, the effect of the surface wave is analyzed through simulations and the factors having effect on a propagation phenomenon of sea surface are studied in detail. Also, the justification of the theoretical formula was proved by comparing theoretical values with measuring ones at 880. 2MHz which is the frequency of mobile communication.

  • PDF

Study on the Stability Evaluation of the High-Tc Superconducting Power Cable (고온초전도 전력케이블의 안정도 평가를 위한 교류손실에 관한 연구)

  • Bae, J.H.;Choi, S.J.;Lee, S.J.;Cho, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1236-1240
    • /
    • 2007
  • In order to evaluate if the high-Tc superconducting(HTS) power cable is operating stably, the characteristics of the HTS power cable should be found out. The properties of HTS tapes by measuring the voltage with respect to the current can be archived. But, the HTS power cable is different from the case of HTS tapes. This method is invalid because of the electromagnetic fields caused by other HTS tapes. In this paper, the stability evaluation of the HTS cable was performed by the following procedure. First, the voltage-current characteristics of HTS tape were measured and the electromagnetic field distributions of the HTS power cable with the external magnetic field were analyzed. Second, the losses of the HTS power cable were calculated using the result of the measurement and the analysis. Finally, the stable operation of the HTS power cable was evaluated on the basis of the losses of the superconducting cable.

Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current

  • Pourreza, Tayyeb;Alijani, Ali;Maleki, Vahid A.;Kazemi, Admin
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.481-491
    • /
    • 2021
  • Graphene Nanosheets play an important role in nanosensors due to their proper surface to volume ratio. Therefore, the main purpose of this paper is to consider the nonlinear vibration behavior of graphene nanosheets (GSs) under the influence of electromagnetic fields and electrical current create forces. Considering more realistic assumptions, new equations have been proposed to study the nonlinear vibration behavior of the GSs carrying electrical current and placed in magnetic field. For this purpose, considering the influences of the magnetic tractions created by electrical and eddy currents, new relationships for electromagnetic interaction forces with these nanosheets have been proposed. Nonlinear coupled equations are discretized by Galerkin method, and then solved via Runge-Kutta method. The effect of different parameters such as size effect, electrical current magnitude and magnetic field intensity on the vibration characteristics of GSs is investigated. The results show that the magnetic field increases the linear natural frequency, and decreases the nonlinear natural frequency of the GSs. Excessive increase of the magnetic field causes instability in the GSs.