• Title/Summary/Keyword: Electromagnetic energy

Search Result 703, Processing Time 0.034 seconds

Evaluating the Reduction of Spatial Scattering based on Lead-free Radiation Shielding Sheet using MCNPX Simulation (MCNPX 시뮬레이션을 이용한 무납 방사선 차폐 시트 기반의 공간산란 저감화 평가)

  • Yang, Seung u;Park, Geum-byeol;Heo, Ye Ji;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.367-373
    • /
    • 2020
  • Most of the spatial scattered dose caused by the scattered rays generated by the collision between the object and X-rays is relatively easily absorbed by the human body as electromagnetic waves in the low energy region, thereby increasing the degree of radiation exposure. Such spatial scattering dose is also used as an indicator of the degree of radiation exposure of radiation workers and patients, and there is a need for a method to reduce exposure by reducing the spatial scattered dose that occurs indirectly. Therefore, in this study, a lead-free radiation shielding sheet was proposed as a way to reduce the spatial scattering dose, and a Monte Carlo (MC) simulation was performed based on a chest X-ray examination. The absorbed dose was calculated and the measured value and the shielding rate were compared and evaluated.

Study on Damping Coefficient of Shock Absorber with Magnetic Effects (자기효과를 이용한 충격흡수장치의 감쇠계수에 관한 연구)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Hwang, Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.832-838
    • /
    • 2011
  • The shock absorber with magnetic effect is suggested for a lunar lander. The shock absorber consists of a metal tube, a piston rod, and several permanent magnets moved by a piston rod in the tube, and the shock energy can be dispersed and dissipated by magnetic effects such as the magnetic force existed between a metal and magnets and the eddy current effect generated by a relative motion with a conductor and magnets. Besides, the shock-absorbing effect similar to that of a coil spring can be obtained by arranging the magnets in line, which are facing the same polar each other. The device has a very simple structure and is usable in space due to the unnecessariness of any oil or gas. The shock absorber was designed and manufactured for experiments and its spring and damping characteristics were studied by the theoretical, analytical and experimental methods.

Current Status and Perspectives of Korean Geophysics (우리나라 지구물리학의 현황과 미래 전망)

  • Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.1-14
    • /
    • 2007
  • This paper briefly reviews the history of the Korean geophysics and analyze the current status of geophysical researches. And the future prospects of geophysics are discussed based on social demands for the science and technology in Korea. About thirty universities offer geophysics courses in their academic curricula. Although the number of Ph.D. graduates in geophysics had been small until the year of 1990, but is rapidly increasing. In recent years about $7{\sim}8$ Ph.D's are produced every year. The major geophysical methods used in Ph.D. theses are seismic, electrical and electromagnetic methods, and earthquake waves and research themes are computational geophysics, which involve data processing, modelling, inversion and tomography, geological structures, and paleomagnetic studies in the order of numbers. The Solid Earth Geophysics is generally distinguished in two categories such as "Global Geophysics" and "Exploration Geophysics". However, they are intimately connected, and overlap in many sectors, especially in large scale research projects. The global geophysics has a more academic and general scientific meaning, and several research groups in Korean universities are carrying out the earthquake seismology and paleomagnetic studies. On the other hand the exploration geophysics focuses on practical application of geophysical concepts, and the public research institutes conduct large projects for exploration of energy and mineral resources and to cope with environmental and natural disaster problems. The geophysical studies for local geology and regional crustal structure utilize various survey methods and usually cover both academic and exploration purposes. The computational geophysics constitutes the indispensable theoretical backgrounds for all geophysical sectors. Many young Korean geophysicists, who have strong background in mathematics and physics, devote to the computational geophysics and several groups have made the internationally highest level achievements. But, Korean geophysicists have to expand their research interests to include more global-scale, high-tech researches and collaborative works with various other science groups.

  • PDF

Efficiency Optimization Control of SynRM with FNPI Controller (FNPI 제어기예 의한 SynRM의 효율 최적화 제어)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.29-31
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on fuzzy-neural networks (FN)-PI controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses In variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

ELF-MT Survey Between Sindangri and Dojonri Area in the Okchon Zone (옥천대내(沃川帶內) 신당(新堂)-도전리(道田里) 지역(地域)에 대한 ELF-MT 탐사(探査) 연구(硏究))

  • Min, Kyung Duck;Jeon, Jeong Soo;Chung, Seung Hwan
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.277-285
    • /
    • 1988
  • The ELF-MT survey has been conducted at 9 points along the national road between the Sindangri and Dojonri area to study on the boundary between the Okchon and Choson systems, and subsurface geological structure of these two systems. Natural electromagnetic fields of 7.8, 14, and 20 Hz in the Schumann resonant frequency band were used for ELF-MT measurement. Apparent resistivity values were calculated from the measured magnetic and electric fields at each frequency, and resistivity sections were obtained by means of a trial and error method for one-dimensional analysis and finite element method for two-dimensioal analysis. The results of this study show that the resistivities of the Okchon and Choson systems are 700-3500 ohm-m and 40-5000 ohm-m, respectively. The boundary between these two systems is a fault with the width of 1 km fault zone and resistivity value of 200 ohm-m, and is located around Koburangjae. Another fault is appeared in Sindangri, and its resistivity value is 130 ohm-m. Intrusion of biotite granite is distributed in Jungchijae, and its resistivity value is 750 ohm-m. The area between Susanri and Koburangjae shows the highest resistivity value of 3500 ohm-m because metabasite and amphibolite are distributed in that area. Extremely low resistivity value of 40 ohm-m around Yongamsan is due to the Yongam formation, which is composed of graphitic black slate and overlying Choson Great Limestone group.

  • PDF

Implementation of Zero-Ripple Line Current Induction Cooker using Class-D Current-Source Resonant Inverter with Parallel-Load Network Parameters under Large-Signal Excitation

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1251-1264
    • /
    • 2018
  • The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.

Analysis of the Causes of Accidents Related to 3 Phase 170 kV Gas Insulated Switchgears(GIS) and Preventive Measures (3상 170 kV 가스절연개폐장치(GIS)의 사고 원인 분석 및 예방 대책)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.41-46
    • /
    • 2011
  • The purpose of this paper is to analyze the causes of accidents related to the 3 phase 170 kV gas insulated switchgear of a power system collected from accident sites to secure data for the prevention of similar accidents and provide important points of view regarding diagnosis for the prevention of accidents involving gas insulated switchgears. The analysis results of the causes of accidents involving gas insulated switchgears showed deformation of the manipulation lever installed at the S-phase, disconnection of the insulation rod connection, melting of the upper conductor, a damaged tulip, damage to the lower spacer and the spacer at the breaker, etc. It is believed from this result that the potential for accidents has expanded due to accumulated energy as a result of repeated deterioration. The carbonization depth of a GIS was formed near the screw (T2, T3) used to secure the lower pole of the S-phase tulip. It is not known what has caused the screws to be extruded and melted. However, it is thought that an unbalanced electromagnetic force, micro-discharge, surface discharge, etc., have occurred at that point. In addition, even though 16 years have passed since its installation, there was no installation defect, act of arson, accidental fire, etc. General periodical inspection and diagnosis failed to find the factors causing the accidents. As a system contained in a closed metal container, it has a high risk factor. Therefore, it is necessary to design, install and operate a GIS in accordance with the standard operational procedure (SOP). In addition, it is necessary to apply conversion technology for periodical SF6 gas analysis and precision safety diagnosis. It is expected that tracking and managing these changes in characteristics by recording the results on the history card will provide a significant accident prevention effect.

Fabrication of Miniature Radiation Sensor Using Plastic Optical Fiber for Medical Usage (플라스틱 광섬유를 이용한 초소형 의료용 방사선 센서 제작)

  • Hwang, Young-Muk;Cho, Dong-Hyun;Cho, Hyo-Sung;Kim, Sin;Lee, Bong-Soo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • In this study, film type radiation sensor tips are fabricated for remote sensing of X or g-ray with inorganic scintillators and plastic optical fiber. The visible range of light from the inorganic scintillator that is generated by X and g-ray is guided by the plastic optical fiber and is measured by optical detector and power-meter. It is expected that the fiber-optic radiation sensor which is possible to be developed based on this study is used for remote, fast and exact sensing of X or g-ray because of its characteristics such as very small size, light weight and no interference to electromagnetic fields.

  • PDF

Study on Hardening Depth by Induction Hardening Analysis of Sprocket Using FEA and Experiment Results (유한요소해석을 통한 스프라켓의 유도경화 해석과 실험에 의한 경화 깊이에 대한 연구)

  • Choi, Jin Kyu;Nam, Kwang Sik;Kim, Jae Ki;Choi, Ho Min;Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.393-400
    • /
    • 2016
  • High frequency induction heating (HFIH) is used in many industries and has a number of advantages, including reliability and repeatability. It is a non-contact method of providing energy-efficient heat in the minimum amount of time without using a flame. Recently, HFIH has been actively studied using the finite element method (FEM), however, these studies only focused on the accuracy of the analysis. In this paper, we can measure joule heat distributions by the electromagnetic analysis for HFIH and the temperature distribution from the heat transfer analysis by applying joule heat for a sprocket. The sprocket is heated over $850^{\circ}C$ due to joule heat and then cooled to under $200^{\circ}C$ by using cooling $20^{\circ}C$ water. These processes were used to calculate the FEM and then compared to our experimental results. The calculated outcome may be used to predict hardening depth in HFIH.

Beam line design and beam transport calculation for the μSR facility at RAON

  • Pak, Kihong;Park, Junesic;Jeong, Jae Young;Kim, Jae Chang;Kim, Kyungmin;Kim, Yong Hyun;Son, Jaebum;Lee, Ju Hahn;Lee, Wonjun;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3344-3351
    • /
    • 2021
  • The Rare Isotope Science Project was launched in 2011 in Korea toward constructing the Rare isotope Accelerator complex for ON line experiments (RAON). RAON will house several experimental systems, including the Muon Spin Rotation/Relaxation/Resonance (μSR) facility in High Energy Experimental Building B. This facility will use 600-MeV protons with a maximum current of 660 pμA and beam power of 400 kW. The key μSR features will facilitate projects related to condensed-matter and nuclear physics. Typical experiments require a few million surface muons fully spin-polarized opposite to their momentum for application to small samples. Here, we describe the design of a muon transport beam line for delivering the requisite muon numbers and the electromagnetic-component specifications in the μSR facility. We determine the beam-line configuration via beam-optics calculations and the transmission efficiency via single-particle tracking simulations. The electromagnet properties, including fringe field effects, are applied for each component in the calculations. The designed surface-muon beamline is 17.3 m long, consisting of 2 solenoids, 2 dipoles affording 70° deflection, 9 quadrupoles, and a Wien filter to eliminate contaminant positrons. The average incident-muon flux and spin rotation angle are estimated as 5.2 × 106 μ+/s and 45°, respectively.