• Title/Summary/Keyword: Electromagnetic Waves

Search Result 558, Processing Time 0.027 seconds

Analysis of Electromagnetic Wave Interference Environment to Industrial Machinery (산업설비의 전자파 장해환경 분석)

  • Hong, Yong-Gyu;Kim, Tae-Hyun;Kim, Duck-Keun;Lim, Jang-Sub;Moon, Chae-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1835-1837
    • /
    • 2001
  • The interference of electromagnetic waves in factory is increasing according with development of industrial society and many use of electrical machinery. Electromagnetic wave is defined as the electrical and magnetic field formed by electrical and electronic equipment used in daily lives, which indiscriminatingly affects the human health and operation of machinery. The electromagnetic spectrum ranges from the shorter wavelengths(including gamma and x-rays) to the longer wavelengths(including microwaves and broadcast radio waves). Radiation that is not absorbed or scattered in the atmosphere can reach and affect on the operation of machine. In this study, electromagnetic wave that is interfered to the machine and human is detected in factory, and decrease method of electromagnetic wave interference is studied.

  • PDF

Reduction of specific absorption rate(SAR) in multiple cylindrical-human models (복수 원통형 인체모델에서의 흡수전력 저감)

  • Yang, Jun-Won;Kim, Hyung-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.271-276
    • /
    • 2012
  • As applications of electromagnetic waves increase, biological effects caused by the EM waves are worried about. Many studies about the biological effects are reported. However, there are only a few reports on protection against the EM waves. The protection should be considered for the researchers who use strong EM waves in their experiments. In this paper, a method of reducing SAR in a cylindrical human model by a shield plate is proposed for RF engineers exposed to strong electromagnetic waves. The shield plate modeled as an arc structure is shown effectively to protect the cylindrical human model from the exposed field.

Performance Evaluation on the Reinforcing Material of Plastic Composites for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 플라스틱 복합재료용(複合材料用) 강화재(强化材)의 성능평가(性能評價))

  • Kim, Dong-Jin;Murakami, Ri-ichi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1048-1054
    • /
    • 1999
  • It is important to study the shielding effectiveness(SE) of reinforcing material of plastic composite materials against the electromagnetic(EM) waves. In this paper, SE of the shielding material of EM waves was investigated with actual experiments. The materials used in this study were made up of film, fiber and powder of conductive materials - Cu, Al, CF etc. Also, The resin film was used as matrix. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that copper, aluminum and carbon fiber were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of interval of wires on the SE were studied when the orientation and the space of Cu wires were changed. The SE strongly depended on the. orientation and the space of the Cu wire. SE decreased as the space of the Cu wires was increasing.

Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature

  • Abo-Dahab, S.M.;Othman, Mohamed I.A.;Alsebaey, Ohoud N.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, we established the generalized thermoelasticity phenomenon in an isotropic elastic medium considering the electromagnetic field, rotation and two-temperature. Three theories of generalized thermoelasticity have been applied: Lord-Shulman (one relaxation time), Green-Lindsay (two relaxation times), as well as the coupled theory. We discussed some particular cases in the context of the wave propagation phenomenon in thermoelasticity. From solving the fundamental equations, we arrived that there are three waves: P-, T- and SV-waves that we calculated their velocities. The boundary conditions for mechanical stress and Maxwell's stress and thermal insulated or isothermal have been applied to determine the amplitudes ratios (reflection coefficients) for P-, T - and SV waves. Some utilitarian aspects are obtained from the reflection coefficients, presented graphically, and the new conclusions have been presented. Comparisons are made for the results predicted by different theories (CT, LS, GL) in the absence and presence of the electro-magnetic field, rotation, as well as two-temperature on the reflection of generalized thermoelastic waves. The results obtained concluded that the external parameters as the angle of incidence, electromagnetic field, rotation as well as the theories parameters have strong effect on the phenomenon.

Analysis of Electromagnetic Effect Inside Large Buildings by External Electromagnetic Waves Using Performance-Enhanced PWB Method (성능이 보완된 PWB 방법을 사용한 외부 전자기파에 의한 대형 건물 내부의 전자기파 영향 해석)

  • Lee, Han-Hee;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.12-22
    • /
    • 2019
  • This paper presents a method to perform a more efficient electromagnetic wave analysis inside a large building by external electromagnetic waves. Topological analysis and the PWB method are introduced for electromagnetic wave analysis. In addition, a Performance-Enhanced PWB method, which complements the performance of the PWB method is proposed. A large virtual structure was selected and an analysis environment was set up to perform the electromagnetic wave analysis inside a large building from external electromagnetic waves. A commercially available software, Wireless Insite, was used to verify the accuracy of the the Performance- Enhanced PWB method. As a result of comparing the two results in terms of accuracy, time, and memory, We conclude that the Performance-Enhanced PWB method proposed in this paper is a more efficient method in a large bulding.

Electromagnetic Wave in all Base Stations (다기지국 환경에서 전자파 노출량)

  • Cho, Euy-Hyun;Park, Jeong-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.26-44
    • /
    • 2011
  • The Study was carreid out to see whether the intensity of electromagnetic waves in each floor of a building where the sharing base station has been established is harmful to a human body, and to expect the intensity of the waves in the building. The investigate was performed on both of sharing base station either with many scatterers or without any of them. To satisfy the international standard and the domestic TTA standard, rms for each of the electromagnetic wave of every floor in the building with the station was measured from 3 location of 3 heights(1.1m,1.5m, and 1.7m). Max of the measured rsm from the each of the frequencies in the nine location was confirmed to be 48.12%(the rooftop measured value) at most, compared to the human body protection standard. The value was confirmed to satisfy the human body protection standard for each frequency. And the total value of the calculated exposure indexes for each frequency was determined to be more than 7 times lower at most, which was 0.1445, compared to the 1 standard. Since P value in both of 868MHz and 2.14GHz electromagnetic waves intensity for each base station and floor was less than 0.05, it was revealed to be meaningful, and since R-Sq(adj) value showed a value more than 50%, the regression equation was determined to fully absorb the data information. However, although the P value of both of 868MHz and 2.14GHz electromagnetic waves intensities under the integrating terms of the base station data and the floor data was showed to be less than 0,05, since R-Sq(adj) value of 868MHz electromagnetic waves intensity presented a value smaller than 50%(34.15%), it was determined that the 868MHz electromagnetic waves intensity is very much influenced by an environment with a base station. Because the electromagnetic waves intensity of 2.14GHz show R-Sq(adj) value bigger then 50%(51.8%), The regression equation model of 2.14GHz electromagnetic waves intensity was confirmed to be proper. It also turned out not to be effected by the surrounding environment near a building with the base station and the intensity of electromagnetic waves for each floor of such building was expectable by the regression equation.

Polarimetric Analysis of the Electromagnetic Waves Scattered from Random Surfaces-Full Wave Solutions (랜덤 표면으로부터 산란되는 전자파의 편파적 해석)

  • Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.3
    • /
    • pp.273-288
    • /
    • 1997
  • In this work, the electromagnetic waves scattered from 2-dimensional random rough surfaces are characterized by the $4\times4$ Mueller matrix elements. The full wave solutions are used to compute these elements. The results of the full wave solutions for 1-dimensional random rough surfaces were shown to agree well with those of the experiment and the method of moments. The Mueller matrix elements are related to the like and cross polarized radar cross sections as well as to the relative phase of the vertically and horizontally polarized waves. The $4\times4$ Mueller matrix elements completely characterize electromagnetic scattering from target. The computed results of this paper can be useful to the field of active remote sensing or RCS.

  • PDF

Frequency Spectrum Analysis of Electromagnetic Waves Radiated by Electric Discharges

  • Park, Dae-Won;Kil, Gyung-Suk;Cheon, Sang-Gyu;Kim, Sun-Jae;Cha, Hyeon-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.389-395
    • /
    • 2012
  • In this paper, we analyzed the frequency spectrum of the electromagnetic waves radiated by an electric discharge as a basic study to develop an on-line diagnostic technique for power equipment installed inside closed-switchboards. In order to simulate local and series arc discharges caused by an electric field concentration and poor connections, three types of electrode systems were fabricated, consisting of needle and plane electrodes and an arc generator meeting the specifications of UL 1699. The experiment was carried out in an electromagnetic anechoic chamber, and the measurement system consisted of a PD free transformer, a loop antenna with a frequency bandwidth of 150 kHz-30 MHz, an ultra log periodic antenna with a frequency bandwidth of 30 MHz-2 GHz, and an EMI test receiver with a frequency bandwidth of 3 Hz-3 GHz. According to the experimental results, the frequency spectra of the electrical discharges were widely distributed across a range of 150 kHz-400 MHz, depending on the defects, while commonly found between 150 kHz and 10 MHz. Therefore, considering the ambient noise and antenna characteristics, the best frequency bandwidth for a measurement system to monitor abnormal conditions by detecting electromagnetic waves in closedswitchboards is 150 kHz-10 MHz.

Electromagnetic Scattering by a Plasma Column Moving in the Perpendicular Direction to Its Axis (축과 수직방향으로 운동하는 프라즈마원주에 의한 평면전자파의 산란)

  • 구연건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 1983
  • Scattering of obliquely incident plane electromagnetic waves by an isotropic plasma coumn which is moving uniformly in the perpendicular direction to its axis is treated analytically on the basis of Lorentz transform and boundary conditions. The scattered field, the total scattering cross-section, the rader cross-section, and the angular distribution of the scattered power for the incident plane waves polarized arbitrarily are derived to find the function of the moving velocity of the plasma column and of the angle of the incident plane waves and to find the scattered field of the H-waves more distinguishable than the E-waves.

  • PDF

Characteristics of Radiated Electromagnetic Waves with discharge propagation in Model GIS being Insulation Particle (모의 GIS 내부에 유전체 파티클 존재시 방전진전에 따른 방사전자파 특성)

  • Park, K.S.;Yoon, D.H.;Lee, H.C.;Kim, L.K.;Lee, D.H.;Kim, K.C.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2006-2008
    • /
    • 2004
  • In this paper the imitated electric defect was simulated by insulation particle in the model GIS. This paper studied the distribution of frequency spectrum of the radiated electromagnetic waves using antenna (30-2,000[MHz]) and spectrum analyzer. From results of this study, a new method was introduced for measurement and analysis of the radiated electromagnetic waves in accordance with discharge progress of each defect in the model GIS. It was confirmed that detecting partial discharge and estimating discharge progress can be possible in the model GIS.

  • PDF