• Title/Summary/Keyword: Electromagnetic Wave Propagation

Search Result 194, Processing Time 0.026 seconds

Characteristics of Millimeter-Wave Propagation in Rain Environments (강우환경에서의 밀리미터파 전파 특성)

  • 김양수;백정기;이성수;조삼모;김혁제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.410-418
    • /
    • 1998
  • Rain-attenuation and cross-polarization models for millimeter-wave propagation are discussed and compared with measurements in the various countries. Rain-rate conversion model which converted <$\tau$minutes rain-rate data to one minute rain-rate data, which is applicable for domestic environments are also discussed. Using the converted domestic rain-rate data, probability distributions of rain attenuation and cross-polarization discrimination are computed for various models, and the results are compared with each other.

  • PDF

Improvement of Performance of Thick and High Dielectric Patch Antennas using Photonic Bandgap Structures (포토닉 밴드갭 구조를 이용한 두껍고 유전상수가 높은 패치 안테나의 성능 향상)

  • 기철실;박익모;임한조;한해욱;이정일
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • This paper presents that photonic bandgap structures suppressing the propagation of surface waves can improve the performance of the patch antennas on a thick and high dielectric constant substrate. The forbidden propagation of surface wave due to the photonic bandgap enhances the radiation efficiency and reduces the back radiation drastically.

The Experimented MF Propagation Modeling for Mountain geography (산악지형에 적합한 경험적 중파 전파 모델링)

  • Kim, Bum-Chang;Kwon, Se-Woong;Yoon, Young-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.18-22
    • /
    • 2003
  • In this thesis, Middle frequency wave propagation modeling is studied for the varies mountain geography the experimented middle frequency propagation model is researched in a shot time to analyze the broad area that consists of mountains. Due to the Sommerfeld - Norton model which is used broadly the middle frequency propagation model to analyze the broad area in a short time is proposed introducing the newly attenuation parameter of the experimental results on the basis of actual experiments at the mountain configuration regardless of the area of mountain, plane, sea etc.

  • PDF

Measurement of UHF-Band Propagation Loss for the Long Range Maritime Communication Environment (장거리 해상 통신 환경에서의 UHF 대역 전파 손실 측정)

  • Kim Kyun-Hoi;Tak Youn-Do;Shin Seok-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.490-499
    • /
    • 2006
  • In this paper, we present the newly developed propagation toss model of a long range maritime communication channel, measured by a ground to air flight test, and discuss its validity compared with the predictive value based on the spherical earth reflection model. To measure the propagation loss, actual flight test was performed in the Yellow Sea and the measurement of receiving signal strength was made for overall test range. As far as the test condition is concerned, it is expected that the receiving signal strength must be interfered with the reflected wave by an island existing around the reflection point. Therefore we introduce some modifications on the conventional spherical earth reflection model by including the effect due to the reflected wave from the island. And then, we compare the path loss measured by flight test with that one analyzed by the spherical earth reflection model accounting for reflected wave of the island. As a result of the comparison, it is verified to predict the path loss accurately by the spherical earth reflection model including the effect due to the reflected wave from an island for a long range ground to air communication.

Study on Wave Propagation Characteristics Modeling in Tunnel (터널 환경에서의 전파전파 특성 모델링 연구)

  • Jeong, Won-Jeong;Kim, Tae-Hong;Han, Il-Tak;Choi, Moon-Young;Ryu, Joon-Gyu;Lee, Ho-Jin;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.1003-1013
    • /
    • 2009
  • In the domestic environments, there are many tunnels since most of terrains have mountains. To ensure the quality of wireless network service in NLOS environment like tunnels which differ from indoor or outdoor wireless channels, researches on wave-propagation characteristics. through such channel are necessary. Especially, in such environment the ground repeater called Gap-Fillers are usually used for satellite mobile services. To make sure that mobile service using satellites in tunnels is available, the research about Gap Filling method is essential. This research is focus on the characterising the wave-propagation through tunnels, to find the appropriate frequency, HPBW of the Gap-Filler antennas, the number of Gap-Fillers, etc. In this paper, we present the effective Gap Filling method in tunnels for ISM band, based on analysis of ray tracing and measurement results.

A Safe and Reliable Method for Installing Wireless LAN into a Hospital

  • Hanada, Eisuke;Kudou, Takato
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.269-273
    • /
    • 2011
  • A medical environment in which patient information can be accessed anytime / anywhere is called a "ubiquitous environment". To realize such an environment, the installation of wireless LAN is quite effective. Because the maximum radio wave output (antenna power) is set low in Japan, it has been easy to safely introduce wireless LAN into hospitals, to date mainly into large hospitals. However, if the placement of access points is not done properly, problems will occur, such as signals not reaching the desired area. A solution to these types of problems is to do an electromagnetic-field propagation simulation, which should be performed before construction of the hospital. It is also necessary to protect against security problems, such as signal interception or illegal access. We herein show our procedures for the safe introduction of wireless LAN.

Prediction of Antenna Propagation Characteristic in Space Environment Using Ray Tracing Method (광선 추적법을 이용한 우주 환경에서의 안테나 전파 특성 예측)

  • Kim, ChangSeong;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.1023-1026
    • /
    • 2016
  • We calculate the propagation characteristic of antennas considering refractive indices of space environments. The effective indices of troposphere, stratosphere, and inonshpere are computed and the ray tracing method, geometrical optics, and Huygens' principle are used to estimate refracted and attenuated electromagnetic wave of space environment.

Wave Propagations in the Underwater Anechoic Basin in KRISO (무향 수조 내에서의 음파 전파 특성 연구)

  • 김시문;최영철;박종원;임용곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.363-368
    • /
    • 2001
  • Because of rapid damping of light and electromagnetic wave, acoustic wave has been widely used for underwater communication. However, the propagation of the acoustic wave is highly dependent on the environment such as water properties(temperature, pressure, salinity), bottom and surface conditions, etc.. This paper deals with the surface reflection effect on the wave propagation in the underwater anechoic basin in KRISO. Both theortical and experimental approaches are performed and the results are compared.

  • PDF

Electromagnetic Scattering Resonances on a Periodic Strip Grating on a Grounded Dielectric Slab: Bragg Blazing Phenomena of TE Polarization Case (접지된 유전체 슬랩 위에 위치한 주기적인 스트립 격자 구조에서의 전자기적 산란공진: TE 편파 경우의 Bragg Blazing 현상)

  • 조웅희;홍재표;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.594-606
    • /
    • 1999
  • The electromagnetic scattering characteristics by a periodic strip grating on a grounded dielectric slab for TE polarization case is examined from the viewpoints of both the reflection grating and the leaky wave antenna problems. Numerical results for two kinds of Bragg blazing (resonance type and non-resonance type) phenomena are given and some discussions on the properties such as complex propagation constants, scattering characteristics, and distributions of strip current density are presented.

  • PDF

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.