• Title/Summary/Keyword: Electromagnetic System

Search Result 2,929, Processing Time 0.028 seconds

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic(USG) system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic(R/F) system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

Development of Inspection System for Transparent Pattern of the Electromagnetic Resonance Pen (전자펜 입력용 투명패턴 검사장치 개발)

  • Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.640-645
    • /
    • 2020
  • To produce an input device stably using the transparent electromagnetic pattern of an electromagnetic induction method, pattern inspection is required in advance in the production process. Various methods of inspecting the capacitive pattern for hand-touch have been proposed, but it is difficult to find the related technical data for the pattern inspection method of the transparent electromagnetic induction method. In this study, to develop an inspection system for a fused electromagnetic resonance pen sensor with a copper-etched metal mesh pattern, an inspection algorithm and method for measuring the antenna impedance inside the sensor was proposed by measuring only the exposed FPCB connector. The proposed method was configured as a control board consisting of a microprocessor that forms a loop between specific channels according to the command of a computer, a computer-controlled by the Windows program, an LCR meter measuring the impedance between specific channels, and transmitting the measurement results back to the computer. An evaluation of the proposed system and measurements of nine specimens showed that it could detect the defects of the sensor used in the actual product.

Effect of Skin Tissue Necrosis Relaxation by Low Frequency Pulsed Electromagnetic Fields (LF-PEMF) Stimulation (저주파 펄스 전자기장 자극에 의한 피부 조직괴사 완화 효과)

  • Lee, Jawoo;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • Objective: The aim of this study is to consider the effect of skin tissue necrosis by improving blood flow in animal skin models for low frequency pulsed electromagnetic fields (LF_PEMF) stimulation. Methods: Twenty rats (Wistar EPM-1 male, 280-320 g) were randomly divided into control groups (n=10) and the PEMF groups (n=10). To induce necrosis of the skin tissue, skin flap was treated in the back of the rat, followed by isolation film and skin flap suturing. Subsequently, the degree of necrosis of the skin tissue was observed for 7 days. The control group did not perform any stimulation after the procedure. For the PEMF group, LF_PEMF (1 Hz, 10 mT) was stimulated in the skin flap area, for 30 minutes a day and 7 days. Cross-polarization images were acquired at the site and skin tissue necrosis patterns were analyzed. Results: In the control group, skin tissue necrosis progressed rapidly over time. In the PEMF group, skin tissue necrosis was slower than the control group. In particular, no further skin tissue necrosis progress on the day 6. Over time, a statistically significant difference from the continuous necrosis progression pattern in the control group was identified (p<0.05). Conclusions: It was confirmed that low frequency pulsed electromagnetic fields (LF_PEMF) stimulation can induce relaxation of skin tissue necrosis.

Frequency Spectrum Analysis of Electromagnetic Waves Radiated by Electric Discharges

  • Park, Dae-Won;Kil, Gyung-Suk;Cheon, Sang-Gyu;Kim, Sun-Jae;Cha, Hyeon-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.389-395
    • /
    • 2012
  • In this paper, we analyzed the frequency spectrum of the electromagnetic waves radiated by an electric discharge as a basic study to develop an on-line diagnostic technique for power equipment installed inside closed-switchboards. In order to simulate local and series arc discharges caused by an electric field concentration and poor connections, three types of electrode systems were fabricated, consisting of needle and plane electrodes and an arc generator meeting the specifications of UL 1699. The experiment was carried out in an electromagnetic anechoic chamber, and the measurement system consisted of a PD free transformer, a loop antenna with a frequency bandwidth of 150 kHz-30 MHz, an ultra log periodic antenna with a frequency bandwidth of 30 MHz-2 GHz, and an EMI test receiver with a frequency bandwidth of 3 Hz-3 GHz. According to the experimental results, the frequency spectra of the electrical discharges were widely distributed across a range of 150 kHz-400 MHz, depending on the defects, while commonly found between 150 kHz and 10 MHz. Therefore, considering the ambient noise and antenna characteristics, the best frequency bandwidth for a measurement system to monitor abnormal conditions by detecting electromagnetic waves in closedswitchboards is 150 kHz-10 MHz.

A Study on Electromagnetic-Spring Actuator for Low Cost Miniature Actuators (소형 및 저비용화를 위한 전자석-스프링 구동장치 연구)

  • Kim, Sewoong;Lee, Changseop;Choi, Hyunyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.392-400
    • /
    • 2019
  • This paper provides a fin actuation system of missile based on electromagnetic-spring mechanism to miniaturize the system and lower the cost. Compared with proportional electro-mechanical actuators, the output of Electromagnetic-Spring Actuators(EMSA) has two or three discrete states, but the mechanical configuration of EMSA is simple since it does not need power trains like gears. The simple mechanism of EMSA makes it easy to build small size, low cost, and relatively high torque actuators. However, fast response time is required to improve the dynamic performance and accuracy of missiles since bang-off-bang operation of EMSA affects the flight performance of missile. In this paper the development of EMSA including parameter optimization and mathematical modeling is described. The simulation results using Simulink and experimental test results of prototype EMSAs are presented.

The Roofing System of High wind-Resistant Performance using Thermoplastic polyolefin and Electromagnetic Induction Technology (TPO 시트재와 유도가열공법을 적용한 고내풍성 지붕마감 공법)

  • Choi, Hee-Bok;Shin, Yoon-Seok;Choi, Jin-Cheol;Lee, Bo-Hyeong;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • Strong winds according to global warming cause the increase of the frequency and the repair cost of damaged roofs. In the United States, Factory Mutual Insurance Company(FMIC) promotes the roofing design that resists heavy wind-load, as the means of strict criteria. This fact reveals that more durable roofing system will be also required in Korea. Therefore, this study aims at developing such a system with high wind-resistance performance using Thermoplastic polyolefin(TPO) and Electromagnetic induction technology(EIT) than the previous systems. The system presented in this study consists of 4 main devices as follow; 1) a disc to fix sheets for TPO & EIT method, which can conduct structural design according to site condition, such as region, building height, and wind load. 2) a nail to have about 30% stronger lifting-up capacity than that of the previous nail. 3) a disc to fix sheets, which has triangle protuberance not to damage sheets in the repeatable wind load, and 4) a electromagnetic induction device to combine a disc and a sheet by heating uniformly and quickly adhesive agent on the disc. The results of mock-up test illustrate that the system provides wind-resistant performance to achieve satisfactorily the structural design criteria of FMIC. In addition, the system is faster, chipper, and easier than the existing system, and is expected that this roofing system can be applied to the rehabilitations of an existing as well as a new building.

An Experimental Study on the Effects of Spark Plug on the Strength of Electromagnetic Waves Radiating at the Spark Ignition System (불꽃 점화시스템에서 복사되는 전자파의 세기에 스파크 플러그가 미치는 영향에 대한 실험적 연구)

  • Choe, Gwang-Je;Jho, Shi-Gie;Jang, Sung-Kuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.94-101
    • /
    • 2007
  • This paper, we analyzed that the measured data of the radiated power spectrum of electromagnetic waves and the standing wave ratio(SWR) of the spark plug cable and spark plug. The measured data are the power strength of the electromagnetic waves radiated from the spark ignition system, the measured frequency ranges are 110 to 610MHz. The results show that the strength of radiated power spectrum and bandwidth have relation to the SWR of the the spark plug cable and spark plug, and the SWR of them is different because of the characteristics of resistor at the spark plug is different with the manufacturers. From the analyzed results, it can be concluded that the less SWR is little, the less maximum level of power spectrum is weak and bandwidth above the reference level is small.

Design and Analysis of Vibration Driven Cylindric Electromagnetic Energy Harvester (진동 구동식 원통형 전자기 에너지 하베스터의 설계 및 해석)

  • Chung, Gwiy-Sang;Ryu, Kyeong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.906-910
    • /
    • 2010
  • This paper describes the design and analysis of vibration driven cylindric electromagnetic energy harvester. The proposed harvester consists with spring, coil and rear earth magnet. The design utilizes an electromagnetic transducer and its operating principle is based on the relative movement of a magnet pole with respect to a coil. In order to optimal design and analysis, ANSYS FEA (Finite Elements Analysis) and Matlab model were used to predict the magnetic filed density with vibration and the generated maximum output power with load resistance. The system was designed for 6 Hz of natural frequency and spring constant was 39.48 N/m between 2 mm and 6 mm of displacement in moving magnet. When moving magnet of system was oscillated, each model was obtained that induced voltage in the coil was generated 2.275 Vpp, 2.334 Vpp and 2.384 Vpp, respectively. Then maximum output powers of system at load resistance ($1303{\Omega}$) were generated $124.2{\sim}132.2\;{\mu}W$ during magnets input displacement of 3 mm and 6 Hz periodic oscillation.

Latin Hypercube Sampling Based Probabilistic Small Signal Stability Analysis Considering Load Correlation

  • Zuo, Jian;Li, Yinhong;Cai, Defu;Shi, Dongyuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1832-1842
    • /
    • 2014
  • A novel probabilistic small signal stability analysis (PSSSA) method considering load correlation is proposed in this paper. The superiority Latin hypercube sampling (LHS) technique combined with Monte Carlo simulation (MCS) is utilized to investigate the probabilistic small signal stability of power system in presence of load correlation. LHS helps to reduce the sampling size, meanwhile guarantees the accuracy and robustness of the solutions. The correlation coefficient matrix is adopted to represent the correlations between loads. Simulation results of the two-area, four-machine system prove that the proposed method is an efficient and robust sampling method. Simulation results of the 16-machine, 68-bus test system indicate that load correlation has a significant impact on the probabilistic analysis result of the critical oscillation mode under a certain degree of load uncertainty.

An Analysis of the HEMP Interference Effect in OFDM System (OFDM 시스템에 미치는 HEMP 간섭 영향 분석)

  • Seong, Yun-Hyeon;Chang, Eun-Young;Yoon, Seok-beom
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.244-249
    • /
    • 2015
  • High-altitude electromagnetic pulse (HEMP) is generated from a nuclear burst at high altitudes above the Earth, the electromagnetic fields reach the ground nearly simultaneously with regard to the operation time of systems. The aim of this analysis is to inquire about HEMP characteristics and to analyze about effect in orthogonal frequency division multiplexing (OFDM) system. Specifically, HEMP characteristics are classified field sources, spatial coverage, time domain behavior, frequency spectrum and field intensities in this study. Bits error rate (BER) of the receiver with the software simulation is confirmed for the HEMP effect. Q-factor made a difference about interference duration by transfer characteristics of system. When Q factor is smaller, the recovery time from HEMP interference is short. To the contrary, if the Q factor is larger, the recovery duration is lasted longer by 300-600%.