• Title/Summary/Keyword: Electromagnetic Model

Search Result 1,224, Processing Time 0.027 seconds

Study on Torque Analysis of Micro-Electromagnetic Clutch by Using FEM (FEM을 이용한 Micro-Electromagnetic Clutch 토크해석)

  • Piao Changhao;Cho Chongdu;Kim Myunggu;Pan Qiang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.60-65
    • /
    • 2005
  • This study tries to analyzes the static friction torque that generated in a micro-electromagnetic clutch by using FEM. For the purpose of design change and optimization of the micro-electromagnetic clutch, the static friction torque prediction is very important. We construct the axi symmetric FEM model for analyze the static friction torque and the real material properties are substituted to the FEM model. For a test, predicted static friction torque is compared with experimental one to discuss the rationality of torque analysis process. The analytical result agrees well to experimental data. explaining the validity of the mathematical process and FEM model.

Optimal Design for Maximum Transmittance of Electromagnetic Wave through Foam Core Sandwich Structures Using Genetic Algorism (유전자 알고리즘을 이용한 폼코어 샌드위치 구조물의 전파 투과성 최적화에 관한 연구)

  • 신현수;전흥재;박근식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.183-186
    • /
    • 2001
  • In this paper, the analytical model to understand the propagation of electromagnetic waves in the foam core sandwich structures was proposed. Using the analytical model, efforts were made to find the optimal stacking sequence of composite skins for maximum transmittance of electromagnetic wave. Numerical analyses of unidirectional composites and foam as a function of incident angle were performed. From the results of analysis, the general tendencies of transmittance of electromagnetic wave through composites and foam were obtained. Based on the general tendencies, optimal stacking sequences of composite skins for the maximum transmittance of electromagnetic wave were found with certain ranges of incident angle using genetic algorithm(GA).

  • PDF

The Model Development of Coupled Thermo-Electromagnetic Analysis in Three-phase Induction Motors by using Heat loss Mapping Method (3상 유도 전동기에서의 열손실 사상법을 이용한 열전달-전자기장 연계 수치 해석 모델 개발)

  • Kim, Dong-Hee;Kim, Chi-Won;Jung, Hye-Mi;Lee, Ju;Um, Suk-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.788-789
    • /
    • 2011
  • A comprehensive thermo-electromagnetic model has been developed to estimate temperature and electromagnetic distribution in an three-phase induction motor under steady state operation. Electromagnetic modeling enables us to predict thermal dissipation rates by eddy-current loss and copper loss in induction motors. Non-uniform temperature distributions are investigated to account for the strong effect of local temperature build-up on the motor performance and expected life-span. For more accurate thermal modeling purpose, Heat loss mapping method, which is matched up with electromagnetic losses and volumetric heat source, is developed and performed analysis. Heat loss mapping method can be greatly used as a design or diagnostic tool for three-phase induction motors with complex structural electromagnetic fields.

  • PDF

Design of Super Wide-Band Electromagnetic Wave Absorbers Using Cross-Slotted Ferrite in the Double-Layered Type (십자형 슬롯을 가지는 적층형 초광대역 페라이트 전파흡수체의 설계)

  • 김동일;전상엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.346-352
    • /
    • 1996
  • A wide-band design method of double layered electromagnetic wave absorbers cross-slotted in the second layer(which has very wide band frequency characteristics) is proposed and discussed. The wide-band electromagnetic wave absorber can be designed under some approximations by the the- oretical model using the equivalent material constants method applied to the second layer. Based on the developed model, wide-band electromagnetic wave absorbers with excellent reflectivity characteristics in the frequency range of 30MHz to 3, 170MHz were designed.

  • PDF

Radiated Electromagnetic Field Calculation due to Arc Discharge according to Speed of High Speed Train (고속철도의 속도에 따른 아크에 의한 전자파 방사 계산)

  • Han, In-Su;Lee, Tae-Hyung;Cho, Hong-Shik;Park, Choon-Soo;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.98-100
    • /
    • 2011
  • High speed Train Systems are the energy supplied system via the pantograph through which the voltage and the current supplied by the catenary wire flow. The arc discharges generate owing to the contact loss between the catenary and the pantograph, and the electromagnetic fields radiate. There are many different phenomena between the static charges and the moving charges in view of the radiated electromagnetic fields. To calculate the electromagnetic filed about the moving charges, it is necessary to adapt Lorentz transformation. Actually, the particle which moves near the speed of light has the relativisitic phenomena. In addition, it is necessary to predict the electromagnetic field because the radiated electromagnetic field takes effect on the near electronic devices and the human beings. In this paper, we model the arc discharge into the dipole antenna model, adapt Lorentz transformation to the case that the electric railway cars move, and calculate the radiated electromagnetic field. By the calculation, we take the basis upon the electromagnetic prediction, and apply to the future research.

  • PDF

Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer (전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측)

  • Ahn, Hyun-Mo;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.

Application of Electromagnetic Wave for Evaluating Necking Defects in Bored Piles (현장타설말뚝의 네킹 결함 평가를 위한 전자기파의 적용성 연구)

  • Lee, Jong-Sub;Song, Jung Wook;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The objective of this study is to demonstrate the suitability of electromagnetic waves for evaluating necking defects in bored piles using electromagnetic waves. Experiments are conducted with small-scaled defective model pile with diameter of 150 mm and length of 270 mm. Two necking defects are generated at the upper and lower positions on two different sides of the model pile, respectively. The other two necking defects are generated at the upper and lower positions on the same side of the model pile. Electrical wires are installed alongside the stainless steel wire of a steel cage to configure a two-conductor transmission line. A time-domain reflectometer is used to generate and defect electromagnetic waves. The experimental results show that electromagnetic waves are reflected at the necking defects and the end of the model pile. In addition, calculated defect locations are almost the same as actual defect locations. This study demonstrates that electromagnetic waves can be effective tool for evaluating necking defects in bored piles.

Thermal-electromagnetic Coupled Analysis for Gear Heat Treatment using Simultaneous Duel Frequency (동시 이중주파수를 이용한 기어 열처리의 열·전자기 연성 해석)

  • Yun, Dongwon;Park, Heechang;Ham, Sangyong;Koo, Jeong-Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.563-570
    • /
    • 2015
  • In this paper, Finite Element Analysis (FEA) for gear heat treatment using simultaneous dual frequency (SDF) induction heating is conducted. To do this, thermal-electromagnetic coupled FE model is built. A two dimensional FE model of gear and heater is introduced to reduce computation time. For more time-efficient analysis, harmonic analysis for electromagnetic model is adopted and transient analysis model, for heat transfer model. Through the coupled analysis, it can be found that the proposed FE model can solve for SDF induction heating of gear and heat treatment parameters can also be determined.

Study on Formability Enhancement of Electromagnetic Forming using Gurson Plasticity Material Model (Gurson모델을 사용한 전자기성형의 성형성 개선에 대한 연구)

  • Kim, Jeong;Song, Woojin;Kang, Beomsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.98-104
    • /
    • 2013
  • The effect of the tool-sheet interaction on formability enhancement in electromagnetic forming is investigated using FEM. A free bulging and a conical forming die with 0.7mm AL1050 sheet are used to evaluate damage evolution based on Gurson-Tvergaard-Needleman plasticity material model. The impact between the tool and sheet results in complex stress states including compressive hydrostatic stresses, which leads to a suppression of void growth and restrain ascending void volume fraction of the sheet. Therefore, the damage suppression due to the tool-sheet interaction can be the main factor contributing to the increased formability in the electromagnetic forming process.

Measurement of Rain Induced Attenuation using the Beacon Signal of Koreasat-3

  • Choi, Dong-You;Park, Chang-Gyun
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.119-123
    • /
    • 2004
  • This paper presents here the results of the measurements of rain-induced attenuation in the vertically polarized signal propagating at 12.2525 GHz during some rain events, which occurred in the rainy wet season of the year 2001 at Yong-in, Korea(temperate climate). The attenuation measured experimentally was compared with that obtained using the International Telecommunication Union Radio Communication Sector(ITU-R) model, the SAM model and the Global model. In this paper, measured results are in good agreement with the ITU-R prediction.