• Title/Summary/Keyword: Electromagnetic Energy

Search Result 697, Processing Time 0.034 seconds

The Controller Design of a 2.4MJ Pulse Power Supply for a Electro-Thermal-Chemical Gun (전열화학포용 2.4MJ 펄스 파워 전원의 제어기 설계)

  • Kim, Jong-Soo;Jin, Y.S.;Lee, H.S.;Rim, Geun-Hie;Kim, J.S.
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.12
    • /
    • pp.511-517
    • /
    • 2006
  • The key issues in high power, high energy applications such as electromagnetic launchers include safety, reliability, flexibility, efficiency, compactness, and cost. To explore some of the issues, a control scheme for a large current wave-forming was designed, built and experimentally verified using a 2.4MJ pulse power system (PPS). The PPS was made up of eight capacitors bank unit, each containing six capacitors connected in parallel. Therefore there were 48 capacitors in total, with ratings of 22kV and 50kJ each. Each unit is charged through a charging switch that is operated by air pressure. For discharging each unit has a triggered vacuum switch (TVS) with ratings of 200kA and 250kV. Hence, flexibility of a large current wave-forming can be obtained by controlling the charging voltage and the discharging times. The whole control system includes a personal computer(PC), RS232 and RS485 pseudo converter, electric/optical signal converters and eight 80C196KC micro-controller based capacitor-bank module(CBM) controllers. Hence, the PC based controller can set the capacitor charging voltages and the TVS trigger timings of each CBM controller for the current wave-forming. It also monitors and records the system status data. We illustrated that our control scheme was able to generate the large current pulse flexibly and safely by experiments. The our control scheme minimize the use of optical cables without reducing EMI noise immunity and reliability, this is resulting in cost reduction. Also, the reliability was increased by isolating ground doubly, it reduced drastically the interference of the large voltage pulse induced by the large current pulse. This paper contains the complete control scheme and details of each subsystem unit.

Improving Sensitivity of SAW-based Pressure Sensor with Metal Ground Shielding over Cavity

  • Lee, Kee-Keun;Hwang, Jeang-Su;Wang, Wen;Kim, Geun-Young;Yang, Sang-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.267-274
    • /
    • 2005
  • This paper presents the fabrication of surface acoustic wave (SAW)-based pressure sensor for long-term stable mechanical compression force measurement. SAW pressure sensor has many attractive features for practical pressure measurement: no battery requirement, wireless pressure detection especially at hazardous environments, and easy other functionality integrations such as temperature, humidity, and RFID. A $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate was used because of its high SAW propagation velocity and large values of electromechanical coupling factors $K^2$. A silicon substrate with $\~200{\mu}m$ deep cavity was bonded to the diaphragm with epoxy, in which gold was covered all over the inner cavity in order to confine electromagnetic energy inside the sensor, and provide good isolation of the device from its environment. The reflection coefficient $S_{11}$ was measured using network analyzer. High S/N ratio, sharp reflected peaks, and clear separation between the peaks were observed. As a mechanical compression force was applied to the diaphragm from top with extremely sharp object, the diaphragm was bended, resulting in the phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of applied mechanical compression force. The measured $S_{11}$ results showed a good agreement with simulated results obtained from equivalent admittance circuit modeling.

  • PDF

Zeroth-Order Resonant Antenna with Frequency Reconfigurable Radiating Structures (주파수 재구성 가능한 방사 구조를 갖는 영차 공진 안테나)

  • Lee, Hongmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.12-20
    • /
    • 2013
  • In this paper, a co-planar waveguide(CPW) fed zeroth-order resonant(ZOR) antenna with frequency reconfigurable radiating structures is fabricated and measured. The unit cell of proposed antenna consists of a series metal-insulator-metal(MIM) capacitor and two shunt line inductors which are shorted through the via. The proposed antenna is designed based on a composite right/left-handed(CRLH) transmission line with two unit cells and it has open ended structure in order to radiate electromagnetic energy mainly on the shunt arm. In order to reduce the antenna size and to exhibit a frequency reconfigurable ability using diode switches four straight strips bent by 90 degrees are used as shunt inductors. The total size of fabricated antenna is $0.22{\lambda}_0{\times}0.16{\lambda}_0$ at zeroth-order resonant(ZOR) frequency. The measured maximum gain and bandwidth (VSWR ${\leq}2$) are 3.1 dBi and 56MHz at ZOR frequency of 2.97 GHz, respectively. This type of antenna can be applied to a frequency reconfigurable antenna system with triple bands.

Multi-wavelength Study of Blazars Using Variability as a Tool

  • Baliyan, Kiran S.;Kaur, Navpreet;Chandra, Sunil;Sameer, Sameer;Ganesh, Shashikiran
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2016
  • Active galactic nuclei (AGN) are too compact to be resolved by any existing optical telescope facility, making it difficult to understand their structure and the emission processes responsible for their huge energy output. However, variability, one of their characteristic properties, provides a tool to probe the inner regions of AGN. Blazars are the best candidates for such a study, and hence a considerable amount of effort is being made to investigate variability in these sources across the electromagnetic spectrum. Here, using the Mt. Abu infrared observatory (MIRO) blazar monitoring program, we present intra-night, inter-night, and long term aspects of the variability in S5 0716+71, 3C66A, and OJ 287. These stars show significant variability on short (a few tens of mins, to a few hours, to a few days) to long term (months to years) timescales. Based on the light travel time argument, the shortest variability timescales (micro-variability) provide upper limits to the size of the emission region. While S5 0716 shows a very high duty cycle of variability (> 80 %), 3C66A shows a much lower intra day variability (IDV) duty cycle (< 20 %). All three show rapid variations within 2.5 to 3.5 hr, which, perhaps, are generated near the vicinity of black holes. Assuming this, estimates of the masses of the black holes are made at ~109, 8×108, and 2.7×109 M for S5 0716+71, 3C66A, and OJ 287, respectively. Multi-wavelength light-curves for the blazar PKS 1510-089 are discussed to infer the emission processes responsible for the recent flaring episodes in this source.

Evaluating the Reduction of Spatial Scattering based on Lead-free Radiation Shielding Sheet using MCNPX Simulation (MCNPX 시뮬레이션을 이용한 무납 방사선 차폐 시트 기반의 공간산란 저감화 평가)

  • Yang, Seung u;Park, Geum-byeol;Heo, Ye Ji;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.367-373
    • /
    • 2020
  • Most of the spatial scattered dose caused by the scattered rays generated by the collision between the object and X-rays is relatively easily absorbed by the human body as electromagnetic waves in the low energy region, thereby increasing the degree of radiation exposure. Such spatial scattering dose is also used as an indicator of the degree of radiation exposure of radiation workers and patients, and there is a need for a method to reduce exposure by reducing the spatial scattered dose that occurs indirectly. Therefore, in this study, a lead-free radiation shielding sheet was proposed as a way to reduce the spatial scattering dose, and a Monte Carlo (MC) simulation was performed based on a chest X-ray examination. The absorbed dose was calculated and the measured value and the shielding rate were compared and evaluated.

Study on Damping Coefficient of Shock Absorber with Magnetic Effects (자기효과를 이용한 충격흡수장치의 감쇠계수에 관한 연구)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Hwang, Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.832-838
    • /
    • 2011
  • The shock absorber with magnetic effect is suggested for a lunar lander. The shock absorber consists of a metal tube, a piston rod, and several permanent magnets moved by a piston rod in the tube, and the shock energy can be dispersed and dissipated by magnetic effects such as the magnetic force existed between a metal and magnets and the eddy current effect generated by a relative motion with a conductor and magnets. Besides, the shock-absorbing effect similar to that of a coil spring can be obtained by arranging the magnets in line, which are facing the same polar each other. The device has a very simple structure and is usable in space due to the unnecessariness of any oil or gas. The shock absorber was designed and manufactured for experiments and its spring and damping characteristics were studied by the theoretical, analytical and experimental methods.

Current Status and Perspectives of Korean Geophysics (우리나라 지구물리학의 현황과 미래 전망)

  • Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.1-14
    • /
    • 2007
  • This paper briefly reviews the history of the Korean geophysics and analyze the current status of geophysical researches. And the future prospects of geophysics are discussed based on social demands for the science and technology in Korea. About thirty universities offer geophysics courses in their academic curricula. Although the number of Ph.D. graduates in geophysics had been small until the year of 1990, but is rapidly increasing. In recent years about $7{\sim}8$ Ph.D's are produced every year. The major geophysical methods used in Ph.D. theses are seismic, electrical and electromagnetic methods, and earthquake waves and research themes are computational geophysics, which involve data processing, modelling, inversion and tomography, geological structures, and paleomagnetic studies in the order of numbers. The Solid Earth Geophysics is generally distinguished in two categories such as "Global Geophysics" and "Exploration Geophysics". However, they are intimately connected, and overlap in many sectors, especially in large scale research projects. The global geophysics has a more academic and general scientific meaning, and several research groups in Korean universities are carrying out the earthquake seismology and paleomagnetic studies. On the other hand the exploration geophysics focuses on practical application of geophysical concepts, and the public research institutes conduct large projects for exploration of energy and mineral resources and to cope with environmental and natural disaster problems. The geophysical studies for local geology and regional crustal structure utilize various survey methods and usually cover both academic and exploration purposes. The computational geophysics constitutes the indispensable theoretical backgrounds for all geophysical sectors. Many young Korean geophysicists, who have strong background in mathematics and physics, devote to the computational geophysics and several groups have made the internationally highest level achievements. But, Korean geophysicists have to expand their research interests to include more global-scale, high-tech researches and collaborative works with various other science groups.

  • PDF

Efficiency Optimization Control of SynRM with FNPI Controller (FNPI 제어기예 의한 SynRM의 효율 최적화 제어)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.29-31
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on fuzzy-neural networks (FN)-PI controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses In variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

ELF-MT Survey Between Sindangri and Dojonri Area in the Okchon Zone (옥천대내(沃川帶內) 신당(新堂)-도전리(道田里) 지역(地域)에 대한 ELF-MT 탐사(探査) 연구(硏究))

  • Min, Kyung Duck;Jeon, Jeong Soo;Chung, Seung Hwan
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.277-285
    • /
    • 1988
  • The ELF-MT survey has been conducted at 9 points along the national road between the Sindangri and Dojonri area to study on the boundary between the Okchon and Choson systems, and subsurface geological structure of these two systems. Natural electromagnetic fields of 7.8, 14, and 20 Hz in the Schumann resonant frequency band were used for ELF-MT measurement. Apparent resistivity values were calculated from the measured magnetic and electric fields at each frequency, and resistivity sections were obtained by means of a trial and error method for one-dimensional analysis and finite element method for two-dimensioal analysis. The results of this study show that the resistivities of the Okchon and Choson systems are 700-3500 ohm-m and 40-5000 ohm-m, respectively. The boundary between these two systems is a fault with the width of 1 km fault zone and resistivity value of 200 ohm-m, and is located around Koburangjae. Another fault is appeared in Sindangri, and its resistivity value is 130 ohm-m. Intrusion of biotite granite is distributed in Jungchijae, and its resistivity value is 750 ohm-m. The area between Susanri and Koburangjae shows the highest resistivity value of 3500 ohm-m because metabasite and amphibolite are distributed in that area. Extremely low resistivity value of 40 ohm-m around Yongamsan is due to the Yongam formation, which is composed of graphitic black slate and overlying Choson Great Limestone group.

  • PDF

Implementation of Zero-Ripple Line Current Induction Cooker using Class-D Current-Source Resonant Inverter with Parallel-Load Network Parameters under Large-Signal Excitation

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1251-1264
    • /
    • 2018
  • The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.